• Previous Article
    On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion
  • DCDS Home
  • This Issue
  • Next Article
    Remarks on the Cauchy problem of Klein-Gordon equations with weighted nonlinear terms
October  2015, 35(10): 4859-4887. doi: 10.3934/dcds.2015.35.4859

Existence of Neumann and singular solutions of the fast diffusion equation

1. 

Institute of Mathematics, Academia Sinica, Taipei, 10617, Taiwan

2. 

Department of Mathematics, School of Natural Sciences, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, South Korea

Received  June 2014 Revised  February 2015 Published  April 2015

Let $\Omega$ be a smooth bounded domain in $\mathbb{R}^n$, $n\ge 3$, $0 < m \le \frac{n-2}{n}$, $a_1,a_2,\dots, a_{i_0}\in\Omega$, $\delta_0 = \min_{1 \le i \le i_0} \mbox{dist} (a_i,∂\Omega)$ and let $\Omega_{\delta}=\Omega\setminus\cup_{i=1}^{i_0}B_{\delta}(a_i)$ and $\hat{\Omega}=\Omega\setminus\{a_1\,\dots,a_{i_0}\}$. For any $0<\delta<\delta_0$ we will prove the existence and uniqueness of positive solution of the Neumann problem for the equation $u_t=\Delta u^m$ in $\Omega_{\delta}\times (0,T)$ for some $T>0$. We will prove the existence of singular solutions of this equation in $\hat{\Omega}\times (0,T)$ for some $T>0$ that blow-up at the points $a_1,\dots, a_{i_0}$.
Citation: Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859
References:
[1]

D. G. Aronson, The porous medium equation,, in Nonlinear Diffusion Problems, (1224), 1. doi: 10.1007/BFb0072687.

[2]

M. Bonforte, G. Grillo and J. L. Vazquez, Fast diffusion flow on manifolds of nonpositive curvature,, J. Evol. Eq., 8 (2008), 99. doi: 10.1007/s00028-007-0345-4.

[3]

M. Bonforte, G. Grillo and J. L. Vazquez, Behaviour near extinction for the fast diffusion equation on bounded domains,, J. Math. Pures Appl., 97 (2012), 1. doi: 10.1016/j.matpur.2011.03.002.

[4]

M. Bonforte and J. L. Vazquez, Global positivity estimates and Harnack inequalities for the fast diffusion equation,, J. Funct. Anal., 240 (2006), 399. doi: 10.1016/j.jfa.2006.07.009.

[5]

M. Bonforte and J. L. Vazquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations,, Advances in Math., 223 (2010), 529. doi: 10.1016/j.aim.2009.08.021.

[6]

M. Bonforte and J. L. Vazquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations,, Adv. in Math., 250 (2014), 242. doi: 10.1016/j.aim.2013.09.018.

[7]

H. Brezis and L. Veron, Removable singularities for some nonlinear elliptic equations,, Arch. Rational Mech. Anal., 75 (): 1. doi: 10.1007/BF00284616.

[8]

E. Chasseigne and J. L. Vazquez, Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities,, Arch. Rat. Mech. Anal., 164 (2002), 133. doi: 10.1007/s00205-002-0210-0.

[9]

Y. Z. Chen and E. Dibenedetto, On the local behavior of solutions of singular parabolic equations,, Arch. Rat. Mech. Anal., 103 (1988), 319. doi: 10.1007/BF00251444.

[10]

B. E. J. Dahlberg and C. E. Kenig, Nonnegative solutions to the generalized porous medium equation,, Rev. Mat. Iberoamericana, 2 (1986), 267.

[11]

P. Daskalopoulos and C. E. Kenig, Degenerate Diffusion-Initial Value Problems and Local Regularity Theory,, Tracts in Mathematics 1, (2007). doi: 10.4171/033.

[12]

P. Daskalopoulos, M. del Pino and N. Sesum, Type II ancient compact solutions to the Yamabe flow,, , ().

[13]

P. Daskalopoulos and N. Sesum, On the extinction profile of solutions to fast diffusion,, J. Reine Angew Math., 622 (2008), 95. doi: 10.1515/CRELLE.2008.066.

[14]

P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons,, Advances in Math., 240 (2013), 346. doi: 10.1016/j.aim.2013.03.011.

[15]

E. DiBenedetto, Degenerate Parabolic Equations,, Universitext, (1993). doi: 10.1007/978-1-4612-0895-2.

[16]

E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations,, Springer Monographs in Mathematics, (2012). doi: 10.1007/978-1-4614-1584-8.

[17]

E. DiBenedetto, U. Gianazza and V. Vespri, Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 385.

[18]

E. DiBenedetto and Y. C. Kwong, Harnack estimates and extinction profile for weak solutions of certain singular parabolic equations,, Trans. Amer. Math. Soc., 330 (1992), 783. doi: 10.1090/S0002-9947-1992-1076615-7.

[19]

E. DiBenedetto, Y. C. Kwong and V. Vespri, Local space-analyticity of solutions of certain singular parabolic equations,, Indiana Univ. Math. J., 40 (1991), 741. doi: 10.1512/iumj.1991.40.40033.

[20]

M. Fila, J. L. Vazquez, M. Winkler and E. Yanagida, Rate of convergence to Barenblatt profiles for the fast diffusion equation,, Arch. Rational Mech. Anal., 204 (2012), 599. doi: 10.1007/s00205-011-0486-z.

[21]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. doi: 10.1002/cpa.3160340406.

[22]

M. A. Herrero and M. Pierre, The Cauchy problem for $u_t=\Delta u^m$ when $0 < m < 1$,, Trans. Amer. Math. Soc., 291 (1985), 145. doi: 10.1090/S0002-9947-1985-0797051-0.

[23]

S. Y. Hsu, Asymptotic behaviour of solution of the equation $u_t=\Delta \log u$ near the extinction time,, Advances in Differential Equations, 8 (2003), 161.

[24]

S. Y. Hsu, Existence of singular solutions of a degenerate equation in $\mathbbR^2$,, Math. Ann., 334 (2006), 153. doi: 10.1007/s00208-005-0714-7.

[25]

S. Y. Hsu, Existence and asymptotic behaviour of solutions of the very fast diffusion equation,, Manuscripta Math., 140 (2013), 441. doi: 10.1007/s00229-012-0576-8.

[26]

K. M. Hui, Existence of solutions of the equation $u_t=\Delta \log u$,, Nonlinear Anal. TMA, 37 (1999), 875. doi: 10.1016/S0362-546X(98)00081-9.

[27]

K. M. Hui, On some Dirichlet and Cauchy problems for a singular diffusion equation,, Differential Integral Equations, 15 (2002), 769.

[28]

K. M. Hui, Singular limit of solutions of the very fast diffusion equation,, Nonlinear Anal. TMA, 68 (2008), 1120. doi: 10.1016/j.na.2006.12.009.

[29]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and Quasilinear Equations of Parabolic Type,, Transl. Math. Mono., (1968).

[30]

L. A. Peletier, The Porous Medium Equation,, Applications of Nonlinear Analysis in the Physical Sciences (eds. H. Amann, (1981).

[31]

L. A. Peletier and H. Zhang, Self-similar solutions of a fast diffusion equation that do not conserve mass,, Differential Integral Equations, 8 (1995), 2045.

[32]

M. Del Pino and M. Sáez, On the extinction profile for solutions of $u_t=\Delta u^{(N-2)/(N+2)}$,, Indiana Univ. Math. J., 50 (2001), 611. doi: 10.1512/iumj.2001.50.1876.

[33]

P. E. Sacks, Continuity of solutions of a singular parabolic equation,, Nonlinear Analysis TMA, 7 (1983), 387. doi: 10.1016/0362-546X(83)90092-5.

[34]

J. L. Vazquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type,, J. Math. Pures Appl., 71 (1992), 503.

[35]

J. L. Vazquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations,, Oxford Lecture Series in Mathematics and its Applications, (2006). doi: 10.1093/acprof:oso/9780199202973.001.0001.

[36]

J. L. Vazquez, The porous medium equation-Mathematical Theory,, Oxford Mathematical Monographs, (2007).

show all references

References:
[1]

D. G. Aronson, The porous medium equation,, in Nonlinear Diffusion Problems, (1224), 1. doi: 10.1007/BFb0072687.

[2]

M. Bonforte, G. Grillo and J. L. Vazquez, Fast diffusion flow on manifolds of nonpositive curvature,, J. Evol. Eq., 8 (2008), 99. doi: 10.1007/s00028-007-0345-4.

[3]

M. Bonforte, G. Grillo and J. L. Vazquez, Behaviour near extinction for the fast diffusion equation on bounded domains,, J. Math. Pures Appl., 97 (2012), 1. doi: 10.1016/j.matpur.2011.03.002.

[4]

M. Bonforte and J. L. Vazquez, Global positivity estimates and Harnack inequalities for the fast diffusion equation,, J. Funct. Anal., 240 (2006), 399. doi: 10.1016/j.jfa.2006.07.009.

[5]

M. Bonforte and J. L. Vazquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations,, Advances in Math., 223 (2010), 529. doi: 10.1016/j.aim.2009.08.021.

[6]

M. Bonforte and J. L. Vazquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations,, Adv. in Math., 250 (2014), 242. doi: 10.1016/j.aim.2013.09.018.

[7]

H. Brezis and L. Veron, Removable singularities for some nonlinear elliptic equations,, Arch. Rational Mech. Anal., 75 (): 1. doi: 10.1007/BF00284616.

[8]

E. Chasseigne and J. L. Vazquez, Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities,, Arch. Rat. Mech. Anal., 164 (2002), 133. doi: 10.1007/s00205-002-0210-0.

[9]

Y. Z. Chen and E. Dibenedetto, On the local behavior of solutions of singular parabolic equations,, Arch. Rat. Mech. Anal., 103 (1988), 319. doi: 10.1007/BF00251444.

[10]

B. E. J. Dahlberg and C. E. Kenig, Nonnegative solutions to the generalized porous medium equation,, Rev. Mat. Iberoamericana, 2 (1986), 267.

[11]

P. Daskalopoulos and C. E. Kenig, Degenerate Diffusion-Initial Value Problems and Local Regularity Theory,, Tracts in Mathematics 1, (2007). doi: 10.4171/033.

[12]

P. Daskalopoulos, M. del Pino and N. Sesum, Type II ancient compact solutions to the Yamabe flow,, , ().

[13]

P. Daskalopoulos and N. Sesum, On the extinction profile of solutions to fast diffusion,, J. Reine Angew Math., 622 (2008), 95. doi: 10.1515/CRELLE.2008.066.

[14]

P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons,, Advances in Math., 240 (2013), 346. doi: 10.1016/j.aim.2013.03.011.

[15]

E. DiBenedetto, Degenerate Parabolic Equations,, Universitext, (1993). doi: 10.1007/978-1-4612-0895-2.

[16]

E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations,, Springer Monographs in Mathematics, (2012). doi: 10.1007/978-1-4614-1584-8.

[17]

E. DiBenedetto, U. Gianazza and V. Vespri, Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 385.

[18]

E. DiBenedetto and Y. C. Kwong, Harnack estimates and extinction profile for weak solutions of certain singular parabolic equations,, Trans. Amer. Math. Soc., 330 (1992), 783. doi: 10.1090/S0002-9947-1992-1076615-7.

[19]

E. DiBenedetto, Y. C. Kwong and V. Vespri, Local space-analyticity of solutions of certain singular parabolic equations,, Indiana Univ. Math. J., 40 (1991), 741. doi: 10.1512/iumj.1991.40.40033.

[20]

M. Fila, J. L. Vazquez, M. Winkler and E. Yanagida, Rate of convergence to Barenblatt profiles for the fast diffusion equation,, Arch. Rational Mech. Anal., 204 (2012), 599. doi: 10.1007/s00205-011-0486-z.

[21]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. doi: 10.1002/cpa.3160340406.

[22]

M. A. Herrero and M. Pierre, The Cauchy problem for $u_t=\Delta u^m$ when $0 < m < 1$,, Trans. Amer. Math. Soc., 291 (1985), 145. doi: 10.1090/S0002-9947-1985-0797051-0.

[23]

S. Y. Hsu, Asymptotic behaviour of solution of the equation $u_t=\Delta \log u$ near the extinction time,, Advances in Differential Equations, 8 (2003), 161.

[24]

S. Y. Hsu, Existence of singular solutions of a degenerate equation in $\mathbbR^2$,, Math. Ann., 334 (2006), 153. doi: 10.1007/s00208-005-0714-7.

[25]

S. Y. Hsu, Existence and asymptotic behaviour of solutions of the very fast diffusion equation,, Manuscripta Math., 140 (2013), 441. doi: 10.1007/s00229-012-0576-8.

[26]

K. M. Hui, Existence of solutions of the equation $u_t=\Delta \log u$,, Nonlinear Anal. TMA, 37 (1999), 875. doi: 10.1016/S0362-546X(98)00081-9.

[27]

K. M. Hui, On some Dirichlet and Cauchy problems for a singular diffusion equation,, Differential Integral Equations, 15 (2002), 769.

[28]

K. M. Hui, Singular limit of solutions of the very fast diffusion equation,, Nonlinear Anal. TMA, 68 (2008), 1120. doi: 10.1016/j.na.2006.12.009.

[29]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and Quasilinear Equations of Parabolic Type,, Transl. Math. Mono., (1968).

[30]

L. A. Peletier, The Porous Medium Equation,, Applications of Nonlinear Analysis in the Physical Sciences (eds. H. Amann, (1981).

[31]

L. A. Peletier and H. Zhang, Self-similar solutions of a fast diffusion equation that do not conserve mass,, Differential Integral Equations, 8 (1995), 2045.

[32]

M. Del Pino and M. Sáez, On the extinction profile for solutions of $u_t=\Delta u^{(N-2)/(N+2)}$,, Indiana Univ. Math. J., 50 (2001), 611. doi: 10.1512/iumj.2001.50.1876.

[33]

P. E. Sacks, Continuity of solutions of a singular parabolic equation,, Nonlinear Analysis TMA, 7 (1983), 387. doi: 10.1016/0362-546X(83)90092-5.

[34]

J. L. Vazquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type,, J. Math. Pures Appl., 71 (1992), 503.

[35]

J. L. Vazquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations,, Oxford Lecture Series in Mathematics and its Applications, (2006). doi: 10.1093/acprof:oso/9780199202973.001.0001.

[36]

J. L. Vazquez, The porous medium equation-Mathematical Theory,, Oxford Mathematical Monographs, (2007).

[1]

Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621

[2]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[3]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[4]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[5]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[6]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[7]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[8]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[9]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[10]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[11]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[12]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[13]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[14]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[15]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[16]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[17]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2018332

[18]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[19]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[20]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]