-
Previous Article
Regions of stability for a linear differential equation with two rationally dependent delays
- DCDS Home
- This Issue
-
Next Article
Wave extension problem for the fractional Laplacian
Wavefronts of a stage structured model with state--dependent delay
1. | Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China |
2. | School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875 |
3. | School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China |
References:
[1] |
M. Adimy, F. Crauste, M. Hbid and R. Qesmi, Stability and Hopf bifurcation for a cell population model with state-dependent delay,, SIAM J. Appl. Math., 70 (2010), 1611.
doi: 10.1137/080742713. |
[2] |
W. Aiello and H. Freedman, A time-delay model of a single species growth with stage structure,, Math. Biosci, 101 (1990), 139.
doi: 10.1016/0025-5564(90)90019-U. |
[3] |
W. Aiello, H. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay,, SIAM J. Appl. Math, 52 (1992), 855.
doi: 10.1137/0152048. |
[4] |
J. Al-omari and S. Gourley, Stability and traveling fronts in Lotka-Volterra competition models with stage structure,, SIAM J. Appl. Math., 63 (2003), 2063.
doi: 10.1137/S0036139902416500. |
[5] |
J. Al-Omari and S. Gourley, Dynamics of a stage-structured population model incorporating a state-dependent maturation delay,, Nonlinear Anal. Real World Appl., 6 (2005), 13.
doi: 10.1016/j.nonrwa.2004.04.002. |
[6] |
J. Al-Omari and A. Tallafha, Modelling and analysis of stage-structured population model with state-dependent maturation delay and harvesting,, Int. J. Math. Analysis, 1 (2007), 391.
|
[7] |
H. Andrewartha and L. Birch, The Distribution and Abundance of Animals,, University of Chicago Press, (1954). Google Scholar |
[8] |
H. Barclay and P. driessche, A model for a single species with two life history stages and added mortality,, Ecol. Model, 11 (1980), 157. Google Scholar |
[9] |
M. Benchohra, I. Medjadj, J. Nieto and P. Prakash, Global existence for functional differential equations with state-dependent delay,, J. Funct. Space Appl., (2013).
|
[10] |
J. Canosa, On a nonlinear diffusion equation describing population growth,, IBM J. Res. Develop., 17 (1973), 307.
doi: 10.1147/rd.174.0307. |
[11] |
K. Das and S. Ray, Effect of delay on nutrient cycling in phytoplankton-zooplankton interactions in estuarine system,, Ecol. Model., 215 (2008), 69.
doi: 10.1016/j.ecolmodel.2008.02.019. |
[12] |
R. Gambell, Birds and mammals-Antarctic whales,, in Antarctica (eds. W. Bonner and D. Walton), (1985), 223. Google Scholar |
[13] |
S. Gourley and Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure,, Proc. R. Soc. Lond. A, 459 (2003), 1563.
doi: 10.1098/rspa.2002.1094. |
[14] |
W. Gurney, R. Nisbet and J. Lawton, The systematic formulation of tractible single species population models incorporating age structure,, J. Animal Ecol., 52 (1983), 479.
doi: 10.2307/4567. |
[15] |
J. Hale, Theory of Functional Differential Equations,, Springer-Verlag, (1977).
|
[16] |
F. Hartung, T. Krisztin, H. Walther and J. Wu, Functional differential equations with state-dependent delay: Theory and applications,, in Handbook of Differential Equations: Ordinary Differential Equations. Vol. III (eds. A. Canada, (2006), 435.
doi: 10.1016/S1874-5725(06)80009-X. |
[17] |
K. Hong and P. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-II functional response and harvesting,, Nonlinear Anal. Real World Appl., 14 (2013), 83.
doi: 10.1016/j.nonrwa.2012.05.004. |
[18] |
Q. Hu and X. Zhao, Global dynamics of a state-dependent delay model with unimodal feedback,, J. Math. Anal. Appl., 399 (2013), 133.
doi: 10.1016/j.jmaa.2012.09.058. |
[19] |
D. Jones and C. Walters, Catastrophe theory and fisheries regulation,, J. Fish. Res. Bd. Can., 33 (1976), 2829.
doi: 10.1139/f76-338. |
[20] |
T. Krisztin, A local unstable manifold for differential equations with state-dependent delay,, Discret. Contin. Dyn. S., 9 (2003), 993.
doi: 10.3934/dcds.2003.9.993. |
[21] |
T. Krisztin and A. Rezounenko, Parabolic partial differential equations with discrete state-dependent delay: Classical solutions and solution manifold,, preprint, (2014). Google Scholar |
[22] |
Y. Kuang, Delay Differential Equation with Applications in Population Dynamics,, Academic, (1993).
|
[23] |
H. Landahl and B. Hanson, A three stage population model with cannibalism,, Bull. Math. Biol., 37 (1975), 11. Google Scholar |
[24] |
X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.
doi: 10.1002/cpa.20221. |
[25] |
M. Memory, Stable and unstable manifolds for partial functional differential equations,, Nonlinear Anal., 16 (1991), 131.
doi: 10.1016/0362-546X(91)90164-V. |
[26] |
J. Murray, Mathematical Biology,, Springer, (1989).
doi: 10.1007/978-3-662-08539-4. |
[27] |
A. Rezounenko and J. Wu, A non-local PDE model for population dynamics with state-selective delay: Local theory and global attractors,, J. Comput. Appl. Math., 190 (2006), 99.
doi: 10.1016/j.cam.2005.01.047. |
[28] |
W. Rudin, Functional Analysis,, McGraw-Hill, (1991).
|
[29] |
K. Schaaf, Asymptotic behavior and travelling wave solutions for parabolic functional differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.
doi: 10.2307/2000859. |
[30] |
J. Sherratt, Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations,, Proc. R. Soc. Lond. A, 456 (2000), 2365.
doi: 10.1098/rspa.2000.0616. |
[31] |
K. Tognetti, The two stage stochastic model,, Math. Biosci., 25 (1975), 195.
doi: 10.1016/0025-5564(75)90002-4. |
[32] |
C. Travis and G. Webb, Existence and stability for partial functional differential equations,, Trans. Amer. Math. Soc., 200 (1974), 395.
doi: 10.1090/S0002-9947-1974-0382808-3. |
[33] |
H. Wang, On the existence of traveling waves for delayed reaction-diffusion equations,, J. Differential Equations, 247 (2009), 887.
doi: 10.1016/j.jde.2009.04.002. |
[34] |
S. Wood, S. Blythe, W. Gurney and R. Nisbet, Instability in mortality estimation schemes related to stage-structure population models,, IMA J. Math. Appl. in Medicine and Biology, 6 (1989), 47.
doi: 10.1093/imammb/6.1.47. |
[35] |
J. Wu, Theory and Applications of Partial Functional Differential Equations,, Springer-Verlag, (1996).
doi: 10.1007/978-1-4612-4050-1. |
[36] |
Y. Yang, Hopf bifurcation in a two-competitor, one-prey system with time delay,, Appl. Math. Comput., 214 (2009), 228.
doi: 10.1016/j.amc.2009.03.078. |
[37] |
Q. Ye, Z. Li, M. Wang and Y. Wu, Introduction of Reaction-Diffusion Equations,, Second edition, (2011). Google Scholar |
[38] |
A. Zaghrout and S. Attalah, Analysis of a model of stage-structured population dynamics growth with time state-dependent time delay,, Appl. Math. Comput., 77 (1996), 185.
doi: 10.1016/S0096-3003(95)00212-X. |
[39] |
G. Zhang, W. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure,, Math. Comput. Model., 49 (2009), 1021.
doi: 10.1016/j.mcm.2008.09.007. |
[40] |
L. Zhang, B. Li and J. Shang, Stability and travelling waves for a time-delayed population system with stage structure,, Nonlinear Anal. Real World Appl., 13 (2012), 1429.
doi: 10.1016/j.nonrwa.2011.11.007. |
show all references
References:
[1] |
M. Adimy, F. Crauste, M. Hbid and R. Qesmi, Stability and Hopf bifurcation for a cell population model with state-dependent delay,, SIAM J. Appl. Math., 70 (2010), 1611.
doi: 10.1137/080742713. |
[2] |
W. Aiello and H. Freedman, A time-delay model of a single species growth with stage structure,, Math. Biosci, 101 (1990), 139.
doi: 10.1016/0025-5564(90)90019-U. |
[3] |
W. Aiello, H. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay,, SIAM J. Appl. Math, 52 (1992), 855.
doi: 10.1137/0152048. |
[4] |
J. Al-omari and S. Gourley, Stability and traveling fronts in Lotka-Volterra competition models with stage structure,, SIAM J. Appl. Math., 63 (2003), 2063.
doi: 10.1137/S0036139902416500. |
[5] |
J. Al-Omari and S. Gourley, Dynamics of a stage-structured population model incorporating a state-dependent maturation delay,, Nonlinear Anal. Real World Appl., 6 (2005), 13.
doi: 10.1016/j.nonrwa.2004.04.002. |
[6] |
J. Al-Omari and A. Tallafha, Modelling and analysis of stage-structured population model with state-dependent maturation delay and harvesting,, Int. J. Math. Analysis, 1 (2007), 391.
|
[7] |
H. Andrewartha and L. Birch, The Distribution and Abundance of Animals,, University of Chicago Press, (1954). Google Scholar |
[8] |
H. Barclay and P. driessche, A model for a single species with two life history stages and added mortality,, Ecol. Model, 11 (1980), 157. Google Scholar |
[9] |
M. Benchohra, I. Medjadj, J. Nieto and P. Prakash, Global existence for functional differential equations with state-dependent delay,, J. Funct. Space Appl., (2013).
|
[10] |
J. Canosa, On a nonlinear diffusion equation describing population growth,, IBM J. Res. Develop., 17 (1973), 307.
doi: 10.1147/rd.174.0307. |
[11] |
K. Das and S. Ray, Effect of delay on nutrient cycling in phytoplankton-zooplankton interactions in estuarine system,, Ecol. Model., 215 (2008), 69.
doi: 10.1016/j.ecolmodel.2008.02.019. |
[12] |
R. Gambell, Birds and mammals-Antarctic whales,, in Antarctica (eds. W. Bonner and D. Walton), (1985), 223. Google Scholar |
[13] |
S. Gourley and Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure,, Proc. R. Soc. Lond. A, 459 (2003), 1563.
doi: 10.1098/rspa.2002.1094. |
[14] |
W. Gurney, R. Nisbet and J. Lawton, The systematic formulation of tractible single species population models incorporating age structure,, J. Animal Ecol., 52 (1983), 479.
doi: 10.2307/4567. |
[15] |
J. Hale, Theory of Functional Differential Equations,, Springer-Verlag, (1977).
|
[16] |
F. Hartung, T. Krisztin, H. Walther and J. Wu, Functional differential equations with state-dependent delay: Theory and applications,, in Handbook of Differential Equations: Ordinary Differential Equations. Vol. III (eds. A. Canada, (2006), 435.
doi: 10.1016/S1874-5725(06)80009-X. |
[17] |
K. Hong and P. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-II functional response and harvesting,, Nonlinear Anal. Real World Appl., 14 (2013), 83.
doi: 10.1016/j.nonrwa.2012.05.004. |
[18] |
Q. Hu and X. Zhao, Global dynamics of a state-dependent delay model with unimodal feedback,, J. Math. Anal. Appl., 399 (2013), 133.
doi: 10.1016/j.jmaa.2012.09.058. |
[19] |
D. Jones and C. Walters, Catastrophe theory and fisheries regulation,, J. Fish. Res. Bd. Can., 33 (1976), 2829.
doi: 10.1139/f76-338. |
[20] |
T. Krisztin, A local unstable manifold for differential equations with state-dependent delay,, Discret. Contin. Dyn. S., 9 (2003), 993.
doi: 10.3934/dcds.2003.9.993. |
[21] |
T. Krisztin and A. Rezounenko, Parabolic partial differential equations with discrete state-dependent delay: Classical solutions and solution manifold,, preprint, (2014). Google Scholar |
[22] |
Y. Kuang, Delay Differential Equation with Applications in Population Dynamics,, Academic, (1993).
|
[23] |
H. Landahl and B. Hanson, A three stage population model with cannibalism,, Bull. Math. Biol., 37 (1975), 11. Google Scholar |
[24] |
X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1.
doi: 10.1002/cpa.20221. |
[25] |
M. Memory, Stable and unstable manifolds for partial functional differential equations,, Nonlinear Anal., 16 (1991), 131.
doi: 10.1016/0362-546X(91)90164-V. |
[26] |
J. Murray, Mathematical Biology,, Springer, (1989).
doi: 10.1007/978-3-662-08539-4. |
[27] |
A. Rezounenko and J. Wu, A non-local PDE model for population dynamics with state-selective delay: Local theory and global attractors,, J. Comput. Appl. Math., 190 (2006), 99.
doi: 10.1016/j.cam.2005.01.047. |
[28] |
W. Rudin, Functional Analysis,, McGraw-Hill, (1991).
|
[29] |
K. Schaaf, Asymptotic behavior and travelling wave solutions for parabolic functional differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.
doi: 10.2307/2000859. |
[30] |
J. Sherratt, Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations,, Proc. R. Soc. Lond. A, 456 (2000), 2365.
doi: 10.1098/rspa.2000.0616. |
[31] |
K. Tognetti, The two stage stochastic model,, Math. Biosci., 25 (1975), 195.
doi: 10.1016/0025-5564(75)90002-4. |
[32] |
C. Travis and G. Webb, Existence and stability for partial functional differential equations,, Trans. Amer. Math. Soc., 200 (1974), 395.
doi: 10.1090/S0002-9947-1974-0382808-3. |
[33] |
H. Wang, On the existence of traveling waves for delayed reaction-diffusion equations,, J. Differential Equations, 247 (2009), 887.
doi: 10.1016/j.jde.2009.04.002. |
[34] |
S. Wood, S. Blythe, W. Gurney and R. Nisbet, Instability in mortality estimation schemes related to stage-structure population models,, IMA J. Math. Appl. in Medicine and Biology, 6 (1989), 47.
doi: 10.1093/imammb/6.1.47. |
[35] |
J. Wu, Theory and Applications of Partial Functional Differential Equations,, Springer-Verlag, (1996).
doi: 10.1007/978-1-4612-4050-1. |
[36] |
Y. Yang, Hopf bifurcation in a two-competitor, one-prey system with time delay,, Appl. Math. Comput., 214 (2009), 228.
doi: 10.1016/j.amc.2009.03.078. |
[37] |
Q. Ye, Z. Li, M. Wang and Y. Wu, Introduction of Reaction-Diffusion Equations,, Second edition, (2011). Google Scholar |
[38] |
A. Zaghrout and S. Attalah, Analysis of a model of stage-structured population dynamics growth with time state-dependent time delay,, Appl. Math. Comput., 77 (1996), 185.
doi: 10.1016/S0096-3003(95)00212-X. |
[39] |
G. Zhang, W. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure,, Math. Comput. Model., 49 (2009), 1021.
doi: 10.1016/j.mcm.2008.09.007. |
[40] |
L. Zhang, B. Li and J. Shang, Stability and travelling waves for a time-delayed population system with stage structure,, Nonlinear Anal. Real World Appl., 13 (2012), 1429.
doi: 10.1016/j.nonrwa.2011.11.007. |
[1] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[2] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[3] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[4] |
Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021009 |
[5] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[6] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[7] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[8] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[9] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 |
[10] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[11] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[12] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[13] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[14] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[15] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[16] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
[17] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[18] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293 |
[19] |
Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85 |
[20] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]