• Previous Article
    Regions of stability for a linear differential equation with two rationally dependent delays
  • DCDS Home
  • This Issue
  • Next Article
    Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities
October  2015, 35(10): 4987-5001. doi: 10.3934/dcds.2015.35.4987

Singly periodic free boundary minimal surfaces in a solid cylinder of $\mathbb{R}^3$

1. 

KAIST, Department of Mathematical Sciences, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, South Korea

Received  August 2014 Revised  February 2015 Published  April 2015

The aim of this work is to show the existence of free boundary minimal surfaces of Saddle Tower type which are embedded in a vertical solid cylinder in $\mathbb{R}^3$ and invariant with respect to a vertical translation. The number of boundary curves equals $2l$, $l \ge 2$. These surfaces come in families depending on one parameter and they converge to $2l$ vertical stripes having a common vertical intersection line. Such surfaces are obtained by perturbing the symmetrically modified Saddle Tower minimal surfaces.
Citation: Filippo Morabito. Singly periodic free boundary minimal surfaces in a solid cylinder of $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4987-5001. doi: 10.3934/dcds.2015.35.4987
References:
[1]

M. M. Fall and C. Mercuri, Minimal disc-type surfaces embedded in a perturbed cylinder,, Differential Integral Equations, 22 (2009), 1115.

[2]

H. Karcher, Embedded minimal surfaces derived from Scherk's examples,, Manuscripta Math., 62 (1988), 83. doi: 10.1007/BF01258269.

[3]

R. Huff and J. McCuan, Scherk-type capillary graphs,, J. Mathematical Fluid Mechanics, 8 (2006), 99. doi: 10.1007/s00021-004-0140-8.

[4]

R. Lopez and J. Pyo, Capillary surfaces of constant mean curvature in a right solid cylinder,, Math. Nachrichten, 287 (2014), 1312. doi: 10.1002/mana.201200301.

[5]

S. Montiel and A. Ros, Schrödinger operators associated to a holomorphic map,, Global Differential Geometry and Global Analysis, (1481), 147. doi: 10.1007/BFb0083639.

[6]

F. Morabito, A Costa-Hoffman-Meeks type surface in $\mathbbH^2 \times \mathbbR$,, Trans. Am. Math. Soc., 363 (2011), 1. doi: 10.1090/S0002-9947-2010-04952-9.

[7]

F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbbR^3$,, Boundary Value Problems, (2014).

[8]

F. Pacard, Connected sum constructions in geometry and non-linear analysis,, Lecture notes available from: , ().

[9]

M. Traizet, Construction de surfaces minimales en recollant des surfaces de Scherk,, Annales Institut Fourier, 46 (1996), 1385. doi: 10.5802/aif.1554.

[10]

M. Weber, Classical minimal surfaces in euclidean space by examples: Geometric and computational aspects of the Weierstrass representation,, in Global Theory of Minimal Surfaces, (2005), 19.

show all references

References:
[1]

M. M. Fall and C. Mercuri, Minimal disc-type surfaces embedded in a perturbed cylinder,, Differential Integral Equations, 22 (2009), 1115.

[2]

H. Karcher, Embedded minimal surfaces derived from Scherk's examples,, Manuscripta Math., 62 (1988), 83. doi: 10.1007/BF01258269.

[3]

R. Huff and J. McCuan, Scherk-type capillary graphs,, J. Mathematical Fluid Mechanics, 8 (2006), 99. doi: 10.1007/s00021-004-0140-8.

[4]

R. Lopez and J. Pyo, Capillary surfaces of constant mean curvature in a right solid cylinder,, Math. Nachrichten, 287 (2014), 1312. doi: 10.1002/mana.201200301.

[5]

S. Montiel and A. Ros, Schrödinger operators associated to a holomorphic map,, Global Differential Geometry and Global Analysis, (1481), 147. doi: 10.1007/BFb0083639.

[6]

F. Morabito, A Costa-Hoffman-Meeks type surface in $\mathbbH^2 \times \mathbbR$,, Trans. Am. Math. Soc., 363 (2011), 1. doi: 10.1090/S0002-9947-2010-04952-9.

[7]

F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbbR^3$,, Boundary Value Problems, (2014).

[8]

F. Pacard, Connected sum constructions in geometry and non-linear analysis,, Lecture notes available from: , ().

[9]

M. Traizet, Construction de surfaces minimales en recollant des surfaces de Scherk,, Annales Institut Fourier, 46 (1996), 1385. doi: 10.5802/aif.1554.

[10]

M. Weber, Classical minimal surfaces in euclidean space by examples: Geometric and computational aspects of the Weierstrass representation,, in Global Theory of Minimal Surfaces, (2005), 19.

[1]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[2]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[3]

Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044

[4]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[5]

Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645

[6]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

[7]

Antonio DeSimone, Natalie Grunewald, Felix Otto. A new model for contact angle hysteresis. Networks & Heterogeneous Media, 2007, 2 (2) : 211-225. doi: 10.3934/nhm.2007.2.211

[8]

Carlos E. Kenig, Tatiana Toro. On the free boundary regularity theorem of Alt and Caffarelli. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 397-422. doi: 10.3934/dcds.2004.10.397

[9]

Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure & Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421

[10]

José Ginés Espín Buendía, Daniel Peralta-salas, Gabriel Soler López. Existence of minimal flows on nonorientable surfaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4191-4211. doi: 10.3934/dcds.2017178

[11]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[12]

Nam-Yong Lee, Bradley J. Lucier. Preconditioned conjugate gradient method for boundary artifact-free image deblurring. Inverse Problems & Imaging, 2016, 10 (1) : 195-225. doi: 10.3934/ipi.2016.10.195

[13]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[14]

Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy. Networks & Heterogeneous Media, 2011, 6 (2) : 241-255. doi: 10.3934/nhm.2011.6.241

[15]

Francisco Brito, Maria Luiza Leite, Vicente de Souza Neto. Liouville's formula under the viewpoint of minimal surfaces. Communications on Pure & Applied Analysis, 2004, 3 (1) : 41-51. doi: 10.3934/cpaa.2004.3.41

[16]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[17]

Francesco Maggi, Salvatore Stuvard, Antonello Scardicchio. Soap films with gravity and almost-minimal surfaces. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-36. doi: 10.3934/dcds.2019236

[18]

Kariane Calta, John Smillie. Algebraically periodic translation surfaces. Journal of Modern Dynamics, 2008, 2 (2) : 209-248. doi: 10.3934/jmd.2008.2.209

[19]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[20]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]