\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Singly periodic free boundary minimal surfaces in a solid cylinder of $\mathbb{R}^3$

Abstract / Introduction Related Papers Cited by
  • The aim of this work is to show the existence of free boundary minimal surfaces of Saddle Tower type which are embedded in a vertical solid cylinder in $\mathbb{R}^3$ and invariant with respect to a vertical translation. The number of boundary curves equals $2l$, $l \ge 2$. These surfaces come in families depending on one parameter and they converge to $2l$ vertical stripes having a common vertical intersection line. Such surfaces are obtained by perturbing the symmetrically modified Saddle Tower minimal surfaces.
    Mathematics Subject Classification: 53A10, 35R35, 53C21.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. M. Fall and C. Mercuri, Minimal disc-type surfaces embedded in a perturbed cylinder, Differential Integral Equations, 22 (2009), 1115-1124.

    [2]

    H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math., 62 (1988), 83-114.doi: 10.1007/BF01258269.

    [3]

    R. Huff and J. McCuan, Scherk-type capillary graphs, J. Mathematical Fluid Mechanics, 8 (2006), 99-119.doi: 10.1007/s00021-004-0140-8.

    [4]

    R. Lopez and J. Pyo, Capillary surfaces of constant mean curvature in a right solid cylinder, Math. Nachrichten, 287 (2014), 1312-1319.doi: 10.1002/mana.201200301.

    [5]

    S. Montiel and A. Ros, Schrödinger operators associated to a holomorphic map, Global Differential Geometry and Global Analysis, Lecture Notes in Mathematics, 1481, Springer, Berlin, 1991, 147-174.doi: 10.1007/BFb0083639.

    [6]

    F. Morabito, A Costa-Hoffman-Meeks type surface in $\mathbbH^2 \times \mathbbR$, Trans. Am. Math. Soc., 363 (2011), 1-36.doi: 10.1090/S0002-9947-2010-04952-9.

    [7]

    F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbbR^3$, Boundary Value Problems, (2014), p130. Published online only at: http://www.boundaryvalueproblems.com/content/2014/1/130.

    [8]

    F. Pacard, Connected sum constructions in geometry and non-linear analysis, Lecture notes available from: http://www.math.polytechnique.fr/~pacard/Publications/Lecture-Part-I.pdf.

    [9]

    M. Traizet, Construction de surfaces minimales en recollant des surfaces de Scherk, Annales Institut Fourier, 46 (1996), 1385-1442.doi: 10.5802/aif.1554.

    [10]

    M. Weber, Classical minimal surfaces in euclidean space by examples: Geometric and computational aspects of the Weierstrass representation, in Global Theory of Minimal Surfaces, Proceedings of the Clay Mathematical Institute, 2, A co-publication of the AMS and Clay Mathematics Institute, 2005, 19-63.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return