Citation: |
[1] |
M. M. Fall and C. Mercuri, Minimal disc-type surfaces embedded in a perturbed cylinder, Differential Integral Equations, 22 (2009), 1115-1124. |
[2] |
H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math., 62 (1988), 83-114.doi: 10.1007/BF01258269. |
[3] |
R. Huff and J. McCuan, Scherk-type capillary graphs, J. Mathematical Fluid Mechanics, 8 (2006), 99-119.doi: 10.1007/s00021-004-0140-8. |
[4] |
R. Lopez and J. Pyo, Capillary surfaces of constant mean curvature in a right solid cylinder, Math. Nachrichten, 287 (2014), 1312-1319.doi: 10.1002/mana.201200301. |
[5] |
S. Montiel and A. Ros, Schrödinger operators associated to a holomorphic map, Global Differential Geometry and Global Analysis, Lecture Notes in Mathematics, 1481, Springer, Berlin, 1991, 147-174.doi: 10.1007/BFb0083639. |
[6] |
F. Morabito, A Costa-Hoffman-Meeks type surface in $\mathbbH^2 \times \mathbbR$, Trans. Am. Math. Soc., 363 (2011), 1-36.doi: 10.1090/S0002-9947-2010-04952-9. |
[7] |
F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbbR^3$, Boundary Value Problems, (2014), p130. Published online only at: http://www.boundaryvalueproblems.com/content/2014/1/130. |
[8] |
F. Pacard, Connected sum constructions in geometry and non-linear analysis, Lecture notes available from: http://www.math.polytechnique.fr/~pacard/Publications/Lecture-Part-I.pdf. |
[9] |
M. Traizet, Construction de surfaces minimales en recollant des surfaces de Scherk, Annales Institut Fourier, 46 (1996), 1385-1442.doi: 10.5802/aif.1554. |
[10] |
M. Weber, Classical minimal surfaces in euclidean space by examples: Geometric and computational aspects of the Weierstrass representation, in Global Theory of Minimal Surfaces, Proceedings of the Clay Mathematical Institute, 2, A co-publication of the AMS and Clay Mathematics Institute, 2005, 19-63. |