• Previous Article
    Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing
  • DCDS Home
  • This Issue
  • Next Article
    Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations
2015, 35(11): 5435-5445. doi: 10.3934/dcds.2015.35.5435

Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions

1. 

Department of Mathematics, University of Kansas, Lawrence, KS 66045, United States

Received  December 2012 Revised  February 2014 Published  May 2015

A noncooperative, two person, zero sum, stochastic differential game is formulated and solved that is described by a linear stochastic equation in a Hilbert space with a fractional Brownian motion and a quadratic payoff functional for the two players. The stochastic equation can model stochastic partial differential equations not only with distributed strategies and noise but also with control strategies and noise restricted to the boundary of the domain. The optimal strategies for the two players are given explicitly. The verification method is a generalization of completion of squares and provides the optimal strategies directly without solving partial differential equations or backward stochastic differential equations. Some examples of games described by stochastic partial differential equations are given.
Citation: Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435
References:
[1]

E. Bayraktar and H. V. Poor, Stochastic differential games in a non-Markovian setting,, SIAM J. Control Optim., 43 (2005), 1737. doi: 10.1137/S0363012902417632.

[2]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations,, SIAM J. Control Optim., 47 (2008), 444. doi: 10.1137/060671954.

[3]

T. E. Duncan, Prediction for some processes related to a fractional Brownian motion,, Stat. Prob. Lett., 76 (2006), 128. doi: 10.1016/j.spl.2005.06.014.

[4]

T. E. Duncan, Linear-exponential-quadratic Gaussian control,, IEEE Trans. Autom. Control, 58 (2013), 2910. doi: 10.1109/TAC.2013.2257610.

[5]

T. E. Duncan, Linear-quadratic stochastic differential games with general noise processes,, in Models and Methods in Economics and Management Science: Essays in Honor of Charles S. Tapiero (eds. F. El Ouardighi and K. Kogan), (2014), 17. doi: 10.1007/978-3-319-00669-7_2.

[6]

T. E. Duncan, J. Jakubowski and B. Pasik-Duncan, Stochastic integration for fractional Brownian motion in a Hilbert space,, Stoch. Dyn., 6 (2006), 53. doi: 10.1142/S0219493706001645.

[7]

T. E. Duncan, B. Maslowski and B. Pasik-Duncan, Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise,, Stoc. Proc. Appl., 115 (2005), 1357. doi: 10.1016/j.spa.2005.03.011.

[8]

T. E. Duncan, B. Maslowski and B. Pasik-Duncan, Semilinear stochastic equations in Hilbert space with a fractional Brownian motion,, SIAM J. Math. Anal., 40 (2009), 2286. doi: 10.1137/08071764X.

[9]

T. E. Duncan, B. Maslowski and B. Pasik-Duncan, Linear-quadratic control for stochastic equations in a Hilbert space with fractional Brownian motions,, SIAM J. Control Optim., 50 (2012), 507. doi: 10.1137/110831416.

[10]

T. E. Duncan and B. Pasik-Duncan, Stochastic linear-quadratic control for systems with a fractional Brownian motion,, in Proc.49th IEEE Conference on Decision and Control, (2010), 6163. doi: 10.1109/CDC.2010.5718045.

[11]

T. E. Duncan and B. Pasik-Duncan, Linear-exponential-quadratic Gaussian control for stochastic equations in a Hilbert space,, Dyn. Systems Applic. (special issue), 21 (2012), 407.

[12]

T. E. Duncan and B. Pasik-Duncan, Linear quadratic fractional Gaussian control,, SIAM J. Control Optim., 51 (2013), 4504. doi: 10.1137/120877283.

[13]

T. E. Duncan, B. Pasik-Duncan and B. Maslowski, Fractional Brownian motion and stochastic equations in Hilbert spaces,, Stoch. Dyn., 2 (2002), 225. doi: 10.1142/S0219493702000340.

[14]

F. Flandoli, Direct solution of a Riccati equation arising in a stochastic control problem with control and observations on the boundary,, Appl. Math. Optim., 14 (1986), 107. doi: 10.1007/BF01442231.

[15]

W. H. Fleming and D. Hernandez-Hernandez, On the value of stochastic differential games,, Commun. Stoch. Anal., 5 (2011), 341.

[16]

W. H. Fleming and P. E. Souganidis, On the existence of value functions of two player, zero sum stochastic differential games,, Indiana Math. J., 38 (1989), 293. doi: 10.1512/iumj.1989.38.38015.

[17]

H. E. Hurst, Long-term storage capacity in reservoirs,, Trans. Amer. Soc. Civil Eng., 116 (1951), 400.

[18]

R. Isaacs, Differential Games,, J. Wiley, (1965).

[19]

D. H. Jacobson, Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games,, IEEE Trans. Autom. Control, AC-18 (1973), 124.

[20]

A. N. Kolmogorov, Wienersche spiralen und einige andere interessante kurven in Hilbertschen Raum,, C.R. (Doklady) Acad. USSS (N.S.), 26 (1940), 115.

[21]

I. Lasiecka and R. Triggiani, Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations,, J. Differential Equations, 47 (1983), 246. doi: 10.1016/0022-0396(83)90036-0.

[22]

I. Lasiecka and R. Triggiani, The regulator problem for parabolic equations with Dirichlet boundary control I,, Appl. Math. Optim., 16 (1987), 147. doi: 10.1007/BF01442189.

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1.

[24]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives,, Gordon and Breach, (1993).

[25]

C. Tudor and M. Tudor, A Wong-Zakai aproximation for double Stratonovich integrals with respect to the fractional Brownian motion,, Math. Rep. (Bucar.), 7 (2005), 253.

[26]

J. Yong and X. Y. Zhou, Stochastic Controls,, Springer-Verlag, (1999). doi: 10.1007/978-1-4612-1466-3.

show all references

References:
[1]

E. Bayraktar and H. V. Poor, Stochastic differential games in a non-Markovian setting,, SIAM J. Control Optim., 43 (2005), 1737. doi: 10.1137/S0363012902417632.

[2]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations,, SIAM J. Control Optim., 47 (2008), 444. doi: 10.1137/060671954.

[3]

T. E. Duncan, Prediction for some processes related to a fractional Brownian motion,, Stat. Prob. Lett., 76 (2006), 128. doi: 10.1016/j.spl.2005.06.014.

[4]

T. E. Duncan, Linear-exponential-quadratic Gaussian control,, IEEE Trans. Autom. Control, 58 (2013), 2910. doi: 10.1109/TAC.2013.2257610.

[5]

T. E. Duncan, Linear-quadratic stochastic differential games with general noise processes,, in Models and Methods in Economics and Management Science: Essays in Honor of Charles S. Tapiero (eds. F. El Ouardighi and K. Kogan), (2014), 17. doi: 10.1007/978-3-319-00669-7_2.

[6]

T. E. Duncan, J. Jakubowski and B. Pasik-Duncan, Stochastic integration for fractional Brownian motion in a Hilbert space,, Stoch. Dyn., 6 (2006), 53. doi: 10.1142/S0219493706001645.

[7]

T. E. Duncan, B. Maslowski and B. Pasik-Duncan, Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise,, Stoc. Proc. Appl., 115 (2005), 1357. doi: 10.1016/j.spa.2005.03.011.

[8]

T. E. Duncan, B. Maslowski and B. Pasik-Duncan, Semilinear stochastic equations in Hilbert space with a fractional Brownian motion,, SIAM J. Math. Anal., 40 (2009), 2286. doi: 10.1137/08071764X.

[9]

T. E. Duncan, B. Maslowski and B. Pasik-Duncan, Linear-quadratic control for stochastic equations in a Hilbert space with fractional Brownian motions,, SIAM J. Control Optim., 50 (2012), 507. doi: 10.1137/110831416.

[10]

T. E. Duncan and B. Pasik-Duncan, Stochastic linear-quadratic control for systems with a fractional Brownian motion,, in Proc.49th IEEE Conference on Decision and Control, (2010), 6163. doi: 10.1109/CDC.2010.5718045.

[11]

T. E. Duncan and B. Pasik-Duncan, Linear-exponential-quadratic Gaussian control for stochastic equations in a Hilbert space,, Dyn. Systems Applic. (special issue), 21 (2012), 407.

[12]

T. E. Duncan and B. Pasik-Duncan, Linear quadratic fractional Gaussian control,, SIAM J. Control Optim., 51 (2013), 4504. doi: 10.1137/120877283.

[13]

T. E. Duncan, B. Pasik-Duncan and B. Maslowski, Fractional Brownian motion and stochastic equations in Hilbert spaces,, Stoch. Dyn., 2 (2002), 225. doi: 10.1142/S0219493702000340.

[14]

F. Flandoli, Direct solution of a Riccati equation arising in a stochastic control problem with control and observations on the boundary,, Appl. Math. Optim., 14 (1986), 107. doi: 10.1007/BF01442231.

[15]

W. H. Fleming and D. Hernandez-Hernandez, On the value of stochastic differential games,, Commun. Stoch. Anal., 5 (2011), 341.

[16]

W. H. Fleming and P. E. Souganidis, On the existence of value functions of two player, zero sum stochastic differential games,, Indiana Math. J., 38 (1989), 293. doi: 10.1512/iumj.1989.38.38015.

[17]

H. E. Hurst, Long-term storage capacity in reservoirs,, Trans. Amer. Soc. Civil Eng., 116 (1951), 400.

[18]

R. Isaacs, Differential Games,, J. Wiley, (1965).

[19]

D. H. Jacobson, Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games,, IEEE Trans. Autom. Control, AC-18 (1973), 124.

[20]

A. N. Kolmogorov, Wienersche spiralen und einige andere interessante kurven in Hilbertschen Raum,, C.R. (Doklady) Acad. USSS (N.S.), 26 (1940), 115.

[21]

I. Lasiecka and R. Triggiani, Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations,, J. Differential Equations, 47 (1983), 246. doi: 10.1016/0022-0396(83)90036-0.

[22]

I. Lasiecka and R. Triggiani, The regulator problem for parabolic equations with Dirichlet boundary control I,, Appl. Math. Optim., 16 (1987), 147. doi: 10.1007/BF01442189.

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1.

[24]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives,, Gordon and Breach, (1993).

[25]

C. Tudor and M. Tudor, A Wong-Zakai aproximation for double Stratonovich integrals with respect to the fractional Brownian motion,, Math. Rep. (Bucar.), 7 (2005), 253.

[26]

J. Yong and X. Y. Zhou, Stochastic Controls,, Springer-Verlag, (1999). doi: 10.1007/978-1-4612-1466-3.

[1]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[2]

Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2018199

[3]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[4]

Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084

[5]

Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077

[6]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[7]

Tzong-Yow Lee. Asymptotic results for super-Brownian motions and semilinear differential equations. Electronic Research Announcements, 1998, 4: 56-62.

[8]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2553-2581. doi: 10.3934/dcdsb.2015.20.2553

[9]

Alain Bensoussan, Jens Frehse, Jens Vogelgesang. Systems of Bellman equations to stochastic differential games with non-compact coupling. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1375-1389. doi: 10.3934/dcds.2010.27.1375

[10]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[11]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[12]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[13]

Jingzhen Liu, Ka-Fai Cedric Yiu. Optimal stochastic differential games with VaR constraints. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1889-1907. doi: 10.3934/dcdsb.2013.18.1889

[14]

Alain Bensoussan, Jens Frehse, Christine Grün. Stochastic differential games with a varying number of players. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1719-1736. doi: 10.3934/cpaa.2014.13.1719

[15]

Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2157-2169. doi: 10.3934/dcdsb.2015.20.2157

[16]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[17]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[18]

Beatris Adriana Escobedo-Trujillo, José Daniel López-Barrientos. Nonzero-sum stochastic differential games with additive structure and average payoffs. Journal of Dynamics & Games, 2014, 1 (4) : 555-578. doi: 10.3934/jdg.2014.1.555

[19]

Beatris A. Escobedo-Trujillo. Discount-sensitive equilibria in zero-sum stochastic differential games. Journal of Dynamics & Games, 2016, 3 (1) : 25-50. doi: 10.3934/jdg.2016002

[20]

Beatris Adriana Escobedo-Trujillo, Alejandro Alaffita-Hernández, Raquiel López-Martínez. Constrained stochastic differential games with additive structure: Average and discount payoffs. Journal of Dynamics & Games, 2018, 5 (2) : 109-141. doi: 10.3934/jdg.2018008

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]