Citation: |
[1] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Application 25, North-Holland, Amsterdam, 1992. |
[2] |
J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.doi: 10.1016/0022-247X(73)90121-2. |
[3] |
J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.doi: 10.1016/0022-0396(73)90056-9. |
[4] |
H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472. |
[5] |
A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation, Appl. Anal., 55 (1994), 61-78.doi: 10.1080/00036819408840290. |
[6] |
P. Biler, Remark on the decay for damped string and beam equations, Nonlinear Anal., 10 (1986), 839-842.doi: 10.1016/0362-546X(86)90071-4. |
[7] |
F. Bucci, I. Chueshov and I. Lasiecka, Global attractor for a composite system of nonlinear wave and plate equations, Commun. Pure Appl. Anal., 6 (2007), 113-140.doi: 10.3934/cpaa.2007.6.113. |
[8] |
F. Bucci and D. Toundykov, Finite-dimensional attractor for a composite system of wave/plate equations with localized damping, Nonlinearity, 23 (2010), 2271-2306.doi: 10.1088/0951-7715/23/9/011. |
[9] |
E. H. de Brito, The damped elastic stretched string equation generalized: Existence, uniqueness,regularity and stability, Applicable Anal., 13 (1982), 219-233.doi: 10.1080/00036818208839392. |
[10] |
M. M. Cavalcanti, Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation, Discrete Contin. Dyn. Syst., 8 (2002), 675-695.doi: 10.3934/dcds.2002.8.675. |
[11] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and T. F. Ma, Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains, Differential Integral Equations, 17 (2004), 495-510. |
[12] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731.doi: 10.1142/S0219199704001483. |
[13] |
R. C. Charão, E. Bisognin, V. Bisognin and A. F. Pazoto, Asymptotic behavior of a Bernoulli-Euler type equation with nonlinear localized damping, Contributions to nonlinear analysis, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 66 (2006), 67-91.doi: 10.1007/3-7643-7401-2_5. |
[14] |
I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999, in Russian; English translation: Acta, Kharkov, 2002. |
[15] |
I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping, J. Abstr. Differ. Equ. Appl., 1 (2010), 86-106. |
[16] |
I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.doi: 10.1016/j.jde.2011.08.022. |
[17] |
I. Chueshov and S. Kolbasin, Plate models with state-dependent damping coefficient and their quasi-static limits, Nonlinear Anal., 73 (2010), 1626-1644.doi: 10.1016/j.na.2010.04.072. |
[18] |
I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Commun. Pure Appl. Anal., 11 (2012), 659-674.doi: 10.3934/cpaa.2012.11.659. |
[19] |
I. Chueshov and I. Lasiecka, Attractors for second order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512.doi: 10.1007/s10884-004-4289-x. |
[20] |
I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc. 195, Providence, 2008.doi: 10.1090/memo/0912. |
[21] |
I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics, Springer Monographs in Mathematics, Springer, New York, 2010.doi: 10.1007/978-0-387-87712-9. |
[22] |
I. Chueshov, I. Lasiecka and D. Toundykov, Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent, Discrete Contin. Dyn. Syst., 20 (2008), 459-509.doi: 10.3934/dcds.2008.20.459. |
[23] |
M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam, Discrete Contin. Dyn. Syst., 25 (2009), 1041-1060.doi: 10.3934/dcds.2009.25.1041. |
[24] |
R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454.doi: 10.1016/0022-247X(70)90094-6. |
[25] |
R. W. Dickey, Dynamic stability of equilibrium states of the extensible beam, Proc. Amer. Math. Soc., 41 (1973), 94-102.doi: 10.1090/S0002-9939-1973-0328290-8. |
[26] |
A. Eden and A. J. Milani, Exponential attractor for extensible beam equations, Nonlinearity, 6 (1993), 457-479.doi: 10.1088/0951-7715/6/3/007. |
[27] |
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, RAM: Research in Applied Mathematics, 37. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. |
[28] |
A. Eden, V. Kalantarov and A. Miranville, Finite-dimensional attractors for a general class of nonautonomous wave equations, Appl. Math. Lett., 13 (2000), 17-22.doi: 10.1016/S0893-9659(00)00027-6. |
[29] |
J. G. Eisley, Nonlinear vibration of beams and rectangular plates, Z. Angew. Math. Phys., 15 (1964), 167-175.doi: 10.1007/BF01602658. |
[30] |
C. Foias and E. Olson, Finite fractal dimension and Hölder-Lipschitz parametrization, Indiana Univ. Math. J., 45 (1996), 603-616.doi: 10.1512/iumj.1996.45.1326. |
[31] |
M. Grobbelaar-Van Dalsen and A. van der Merwe, Boundary stabilization for the extensible beam with attached load, Math. Models Methods Appl. Sci., 9 (1999), 379-394.doi: 10.1142/S0218202599000191. |
[32] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI, 1988. |
[33] |
J. R. Kang, Global attractor for an extensible beam equation with localized nonlinear damping and linear memory, Math. Methods Appl. Sci., 34 (2011), 1430-1439.doi: 10.1002/mma.1450. |
[34] |
A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318 (2006), 92-101.doi: 10.1016/j.jmaa.2005.05.031. |
[35] |
A. Kh. Khanmamedov, A global attractor for the plate equation with displacement-dependent damping, Nonlinear Anal., 74 (2011), 1607-1615.doi: 10.1016/j.na.2010.10.031. |
[36] |
G. Kirchhoff, Vorlessunger über Mathematiche Physik, Mechanik, Teubner, Leipzig, 1876. |
[37] |
S. Kolbasin, Attractors for Kirchhoff's equation with a nonlinear damping coefficient, Nonlinear Anal., 71 (2009), 2361-2371.doi: 10.1016/j.na.2009.01.187. |
[38] |
S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations, 135 (1997), 299-314.doi: 10.1006/jdeq.1996.3231. |
[39] |
O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Lezioni Lincee. [Lincei Lectures] Cambridge University Press, Cambridge, 1991.doi: 10.1017/CBO9780511569418. |
[40] |
H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10 (1997), 1075-1092. |
[41] |
P. Lazo, Global solutions for a nonlinear wave equation, Appl. Math. Comput., 200 (2008), 596-601.doi: 10.1016/j.amc.2007.11.056. |
[42] |
T. F. Ma, Boundary stabilization for a non-linear beam on elastic bearings, Math. Methods Appl. Sci., 24 (2001), 583-594.doi: 10.1002/mma.230. |
[43] |
T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.doi: 10.1016/j.na.2010.07.023. |
[44] |
T. F. Ma, V. Narciso and M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations, J. Math. Anal. Appl., 396 (2012), 694-703.doi: 10.1016/j.jmaa.2012.07.004. |
[45] |
L. A. Medeiros, On a new class of nonlinear wave equations, J. Math. Anal. Appl., 69 (1979), 252-262.doi: 10.1016/0022-247X(79)90192-6. |
[46] |
L. A. Medeiros and M. Milla Miranda, On a nonlinear wave equation with damping, Rev. Mat. Univ. Complut. Madrid, 3 (1990), 213-231. |
[47] |
J. E. Muñoz Rivera, Global solution and regularizing properties on a class of nonlinear evolution equation, J. Differential Equations, 128 (1996), 103-124.doi: 10.1006/jdeq.1996.0091. |
[48] |
A. F. Pazoto and G. Perla Menzala, Uniform Rates Of Decay of a Nonlinear Beam with Boundary Dissipation, Report of LNCC/CNPq (Brazil) no 34/97, August 1997. |
[49] |
A. F. Pazoto and G. Perla Menzala, Uniform rates of decay of a nonlinear beam model with thermal effects and nonlinear boundary dissipation, Funkcialaj Ekvacioj, 43 (2000), 339-360. |
[50] |
D. Ševčovič, Existence and limiting behaviour for damped nonlinear evolution equations with nonlocal terms, Comment. Math. Univ. Carolin., 31 (1990), 283-293. |
[51] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl.(4), 146 (1987), 65-96.doi: 10.1007/BF01762360. |
[52] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4684-0313-8. |
[53] |
C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping, Ann. Fac. Sci. Toulouse Math. (6), 8 (1999), 173-193.doi: 10.5802/afst.928. |
[54] |
D. Wang and J. Zhang, Global attractor for a nonlinear plate equation with supported boundary conditions, J. Math. Anal. Appl., 363 (2010), 468-480.doi: 10.1016/j.jmaa.2009.09.020. |
[55] |
S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. |
[56] |
Y. Zhijian, On an extensible beam equation with nonlinear damping and source terms, J. Differential Equations, 254 (2013), 3903-3927.doi: 10.1016/j.jde.2013.02.008. |