February  2016, 36(2): 1005-1021. doi: 10.3934/dcds.2016.36.1005

Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system

1. 

Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, United States

2. 

Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China

Received  June 2014 Published  August 2015

In this paper, the existence and stability results for a two-parameter family of vector solitary-wave solutions (i.e both components are nonzero) of the nonlinear Schrödinger system \begin{equation*} \left\{ \begin{matrix} iu_t+ u_{xx} + (a |u|^2 + b |v|^2) u=0,\\ iv_t+ v_{xx} + (b |u|^2 + c |v|^2) v=0,\\ \end{matrix} \right. \end{equation*} where $u,v$ are complex-valued functions of $(x,t)\in \mathbb R^2$, and $a,b,c \in \mathbb R$ are established. The results extend our earlier ones as well as those of Ohta, Cipolatti and Zumpichiatti and de Figueiredo and Lopes. As opposed to other methods used before to establish existence and stability where the two constraints of the minimization problems are related to each other, our approach here characterizes solitary-wave solutions as minimizers of an energy functional subject to two independent constraints. The set of minimizers is shown to be stable; and depending on the interplay between the parameters $a,b$ and $c$, further information about the structures of this set are given.
Citation: Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005
References:
[1]

J. Albert and S. Bhattarai, Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system,, Adv. Differential Equations, 18 (2013), 1129.

[2]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453. doi: 10.1016/j.crma.2006.01.024.

[3]

________, Standing waves of some coupled nonlinear Schrödinger equations,, J. London Math. Soc., 75 (2007), 67.

[4]

T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system,, Cal. of Var. and PDEs, 37 (2010), 345. doi: 10.1007/s00526-009-0265-y.

[5]

T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems,, Journ. Part. Diff. Eqns., 19 (2006), 200.

[6]

T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353. doi: 10.1007/s11784-007-0033-6.

[7]

D. J. Benney and A. C. Newell, The propagation of nonlinear wave envelopes,, Jour. Math. Phys., 46 (1967), 133.

[8]

J. Byeon, Effect of symmetry to the structure of positive solutions in nonlinear elliptic problems,, Jour. Diff. Eqns., 163 (2000), 429. doi: 10.1006/jdeq.1999.3737.

[9]

T. Cazenave, An Introduction to Nonlinear Schrödinger Equations,, Textos de Métodos Matemáticos, (1989).

[10]

_________, Semilinear Schrödinger equations,, AMS-Courant Lecture Notes, 10 (2003).

[11]

R. Cipolatti and W. Zumpichiatti, Orbitally stable standing waves for a system of coupled nonlinear Schrödinger equations,, Nonlinear Anal., 42 (2000), 445. doi: 10.1016/S0362-546X(98)00357-5.

[12]

E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincare Anal. Non Linearaire, 27 (2010), 953. doi: 10.1016/j.anihpc.2010.01.009.

[13]

D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 149. doi: 10.1016/j.anihpc.2006.11.006.

[14]

D. Garrisi, On the orbital stability of standing-waves solutions to a coupled non-linear Klein-Gordon equation,, Adv. Nonlinear Stud., 12 (2012), 639.

[15]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion,, Appl. Phys. Lett., 23 (1973). doi: 10.1063/1.1654836.

[16]

________, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II. Normal dispersion,, Appl. Phys. Lett., 23 (1973).

[17]

I. Ianni and S. Le Coz, Multi-speed solitary wave solutions for nonlinear Schrödinger systems,, J. London Math. Soc. (2), 89 (2014), 623. doi: 10.1112/jlms/jdt083.

[18]

E. H. Lieb and M. Loss, Analysis, Second edition,, Graduate studies in mathematics, (2001). doi: 10.1090/gsm/014.

[19]

T.-C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$,, Comm. Math. Phys., 255 (2005), 629. doi: 10.1007/s00220-005-1313-x.

[20]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.

[21]

_________, The concentration-compactness principle in the calculus of variations. The locally compact case. II,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223.

[22]

Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phys., 282 (2008), 721. doi: 10.1007/s00220-008-0546-x.

[23]

N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system,, Adv. Diff. Eqns., 16 (2011), 977.

[24]

N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves of a $3-$coupled nonlinear Schrödinger system,, Non. Anal. A: Theory, 90 (2013), 1. doi: 10.1016/j.na.2013.05.027.

[25]

M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations,, Nonlinear Anal.: Theory, 26 (1996), 933. doi: 10.1016/0362-546X(94)00340-8.

[26]

G. J. Roskes, Some nonlinear multiphase interactions,, Stud. Appl. Math., 55 (1976).

[27]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbf {R^n}$,, Comm. Math. Phys., 271 (2007), 199. doi: 10.1007/s00220-006-0179-x.

[28]

X. Song, Stability and instability of standing waves to a system of Schrödinger equations with combined power-type nonlinearities,, Jour. Math. Anal. Appl., 366 (2010), 345. doi: 10.1016/j.jmaa.2009.12.011.

[29]

J. Yang, Multiple permanent-wave trains in nonlinear systems,, Stud. Appl. Math., 100 (1998), 127. doi: 10.1111/1467-9590.00073.

[30]

V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid,, Sov. Phys. Jour. Appl. Mech. Tech. Phys., 9 (1968), 190. doi: 10.1007/BF00913182.

[31]

V. E. Zakharov, Collapse of Langmuir waves,, Sov. Phys. JETP, 35 (1972), 908.

[32]

A. K. Zvezdin and A. F. Popkov, Contribution to the nonlinear theory of magnetostatic spin waves,, Sov. Phys. JETP, 2 (1983).

show all references

References:
[1]

J. Albert and S. Bhattarai, Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system,, Adv. Differential Equations, 18 (2013), 1129.

[2]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453. doi: 10.1016/j.crma.2006.01.024.

[3]

________, Standing waves of some coupled nonlinear Schrödinger equations,, J. London Math. Soc., 75 (2007), 67.

[4]

T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system,, Cal. of Var. and PDEs, 37 (2010), 345. doi: 10.1007/s00526-009-0265-y.

[5]

T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems,, Journ. Part. Diff. Eqns., 19 (2006), 200.

[6]

T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353. doi: 10.1007/s11784-007-0033-6.

[7]

D. J. Benney and A. C. Newell, The propagation of nonlinear wave envelopes,, Jour. Math. Phys., 46 (1967), 133.

[8]

J. Byeon, Effect of symmetry to the structure of positive solutions in nonlinear elliptic problems,, Jour. Diff. Eqns., 163 (2000), 429. doi: 10.1006/jdeq.1999.3737.

[9]

T. Cazenave, An Introduction to Nonlinear Schrödinger Equations,, Textos de Métodos Matemáticos, (1989).

[10]

_________, Semilinear Schrödinger equations,, AMS-Courant Lecture Notes, 10 (2003).

[11]

R. Cipolatti and W. Zumpichiatti, Orbitally stable standing waves for a system of coupled nonlinear Schrödinger equations,, Nonlinear Anal., 42 (2000), 445. doi: 10.1016/S0362-546X(98)00357-5.

[12]

E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincare Anal. Non Linearaire, 27 (2010), 953. doi: 10.1016/j.anihpc.2010.01.009.

[13]

D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 149. doi: 10.1016/j.anihpc.2006.11.006.

[14]

D. Garrisi, On the orbital stability of standing-waves solutions to a coupled non-linear Klein-Gordon equation,, Adv. Nonlinear Stud., 12 (2012), 639.

[15]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion,, Appl. Phys. Lett., 23 (1973). doi: 10.1063/1.1654836.

[16]

________, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II. Normal dispersion,, Appl. Phys. Lett., 23 (1973).

[17]

I. Ianni and S. Le Coz, Multi-speed solitary wave solutions for nonlinear Schrödinger systems,, J. London Math. Soc. (2), 89 (2014), 623. doi: 10.1112/jlms/jdt083.

[18]

E. H. Lieb and M. Loss, Analysis, Second edition,, Graduate studies in mathematics, (2001). doi: 10.1090/gsm/014.

[19]

T.-C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$,, Comm. Math. Phys., 255 (2005), 629. doi: 10.1007/s00220-005-1313-x.

[20]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.

[21]

_________, The concentration-compactness principle in the calculus of variations. The locally compact case. II,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223.

[22]

Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phys., 282 (2008), 721. doi: 10.1007/s00220-008-0546-x.

[23]

N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system,, Adv. Diff. Eqns., 16 (2011), 977.

[24]

N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves of a $3-$coupled nonlinear Schrödinger system,, Non. Anal. A: Theory, 90 (2013), 1. doi: 10.1016/j.na.2013.05.027.

[25]

M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations,, Nonlinear Anal.: Theory, 26 (1996), 933. doi: 10.1016/0362-546X(94)00340-8.

[26]

G. J. Roskes, Some nonlinear multiphase interactions,, Stud. Appl. Math., 55 (1976).

[27]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbf {R^n}$,, Comm. Math. Phys., 271 (2007), 199. doi: 10.1007/s00220-006-0179-x.

[28]

X. Song, Stability and instability of standing waves to a system of Schrödinger equations with combined power-type nonlinearities,, Jour. Math. Anal. Appl., 366 (2010), 345. doi: 10.1016/j.jmaa.2009.12.011.

[29]

J. Yang, Multiple permanent-wave trains in nonlinear systems,, Stud. Appl. Math., 100 (1998), 127. doi: 10.1111/1467-9590.00073.

[30]

V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid,, Sov. Phys. Jour. Appl. Mech. Tech. Phys., 9 (1968), 190. doi: 10.1007/BF00913182.

[31]

V. E. Zakharov, Collapse of Langmuir waves,, Sov. Phys. JETP, 35 (1972), 908.

[32]

A. K. Zvezdin and A. F. Popkov, Contribution to the nonlinear theory of magnetostatic spin waves,, Sov. Phys. JETP, 2 (1983).

[1]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[2]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[3]

Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005

[4]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[5]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[6]

Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations & Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009

[7]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[8]

Zupei Shen, Zhiqing Han, Qinqin Zhang. Ground states of nonlinear Schrödinger equations with fractional Laplacians. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2115-2125. doi: 10.3934/dcdss.2019136

[9]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[10]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

[11]

David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1327-1340. doi: 10.3934/dcdss.2011.4.1327

[12]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267

[13]

Hiroaki Kikuchi. Remarks on the orbital instability of standing waves for the wave-Schrödinger system in higher dimensions. Communications on Pure & Applied Analysis, 2010, 9 (2) : 351-364. doi: 10.3934/cpaa.2010.9.351

[14]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[15]

Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117

[16]

Eugenio Montefusco, Benedetta Pellacci, Marco Squassina. Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems. Communications on Pure & Applied Analysis, 2010, 9 (4) : 867-884. doi: 10.3934/cpaa.2010.9.867

[17]

Dongdong Qin, Xianhua Tang, Qingfang Wu. Ground states of nonlinear Schrödinger systems with periodic or non-periodic potentials. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1261-1280. doi: 10.3934/cpaa.2019061

[18]

Benedetta Noris, Hugo Tavares, Gianmaria Verzini. Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6085-6112. doi: 10.3934/dcds.2015.35.6085

[19]

Chang-Lin Xiang. Remarks on nondegeneracy of ground states for quasilinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5789-5800. doi: 10.3934/dcds.2016054

[20]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]