• Previous Article
    Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system
  • DCDS Home
  • This Issue
  • Next Article
    Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy
February  2016, 36(2): 1023-1039. doi: 10.3934/dcds.2016.36.1023

$C^\infty$ Local solutions of elliptical $2-$Hessian equation in $\mathbb{R}^3$

1. 

Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences, Wuhan 430071

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China

3. 

School of Mathematics, Wuhan University, 430072, Wuhan

Received  June 2014 Revised  March 2015 Published  August 2015

In this work, we study the existence of $C^{\infty}$ local solutions to $2$-Hessian equation in $\mathbb{R}^{3}$. We consider the case that the right hand side function $f$ possibly vanishes, changes the sign, is positively or negatively defined. We also give the convexities of solutions which are related with the annulation or the sign of right-hand side function $f$. The associated linearized operator are uniformly elliptic.
Citation: Guji Tian, Qi Wang, Chao-Jiang Xu. $C^\infty$ Local solutions of elliptical $2-$Hessian equation in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1023-1039. doi: 10.3934/dcds.2016.36.1023
References:
[1]

L. Caffarelli, L. Nirenberg and J. Spruck, Dirichlet problem for nonlinear second order elliptic equations I,Monge-Ampère equations,, Comm. Pure Appl. Math., 37 (1984), 369. doi: 10.1002/cpa.3160370306.

[2]

B. Guan and J. Spruck, Locally convex hypersurfaces of constant curvature with boundary,, Comm. Pure Appl. Math., 57 (2004), 1311. doi: 10.1002/cpa.20010.

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer, (1983). doi: 10.1007/978-3-642-61798-0.

[4]

Q. Han, Local solutions to a class of Monge-Ampère equations of mixed type,, Duke Math. J., 136 (2007), 421.

[5]

J. Hong and C. Zuily, Exitence of $C^{\infty}$ local solutions for the Monge-Ampère equation,, Invent.Math., 89 (1987), 645. doi: 10.1007/BF01388988.

[6]

N. M. Ivochkina, A description of the stability cones generated by differential operators of Monge-Ampère type, English transl.,, Math. USSR Sbornik, 50 (1985), 259.

[7]

N. M. Ivochkina, S. I. Prokofeva and G. V. Yakunina, The Gårding cones in the modern theory of fully nonlinear second order differential equations,, Journal of Mathematical Sciences, 184 (2012), 295. doi: 10.1007/s10958-012-0869-1.

[8]

C. S. Lin, The local isometric embedding in $\mathbbR^3$ of 2-dimensional Riemannian manifolds with non negative curvature,, Journal of Diff. Equations, 21 (1985), 213.

[9]

C. S. Lin, The local isometric embedding in $\mathbbR^{3}$ of two dimensinal Riemannian manifolds with Gaussian curvature changing sign clearly,, Comm. Pure Appl. Math., 39 (1986), 867. doi: 10.1002/cpa.3160390607.

[10]

Q. Wang and C.-J. Xu, $C^{1,1}$ solution of the Dirichlet problem for degenerate k-Hessian equations,, Nonlinear Analysis, 104 (2014), 133. doi: 10.1016/j.na.2014.03.016.

[11]

X.-N. Ma and L. Xu, The convexity of solution of a class Hessian equation in bounded convex domain in $\mathbbR^3$,, Journal of Funct. Anal., 255 (2008), 1713. doi: 10.1016/j.jfa.2008.06.008.

[12]

X.-J. Wang, The $k$-Hessian equation,, Geometric Analysis and PDEs, 1977 (2009), 177. doi: 10.1007/978-3-642-01674-5_5.

show all references

References:
[1]

L. Caffarelli, L. Nirenberg and J. Spruck, Dirichlet problem for nonlinear second order elliptic equations I,Monge-Ampère equations,, Comm. Pure Appl. Math., 37 (1984), 369. doi: 10.1002/cpa.3160370306.

[2]

B. Guan and J. Spruck, Locally convex hypersurfaces of constant curvature with boundary,, Comm. Pure Appl. Math., 57 (2004), 1311. doi: 10.1002/cpa.20010.

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer, (1983). doi: 10.1007/978-3-642-61798-0.

[4]

Q. Han, Local solutions to a class of Monge-Ampère equations of mixed type,, Duke Math. J., 136 (2007), 421.

[5]

J. Hong and C. Zuily, Exitence of $C^{\infty}$ local solutions for the Monge-Ampère equation,, Invent.Math., 89 (1987), 645. doi: 10.1007/BF01388988.

[6]

N. M. Ivochkina, A description of the stability cones generated by differential operators of Monge-Ampère type, English transl.,, Math. USSR Sbornik, 50 (1985), 259.

[7]

N. M. Ivochkina, S. I. Prokofeva and G. V. Yakunina, The Gårding cones in the modern theory of fully nonlinear second order differential equations,, Journal of Mathematical Sciences, 184 (2012), 295. doi: 10.1007/s10958-012-0869-1.

[8]

C. S. Lin, The local isometric embedding in $\mathbbR^3$ of 2-dimensional Riemannian manifolds with non negative curvature,, Journal of Diff. Equations, 21 (1985), 213.

[9]

C. S. Lin, The local isometric embedding in $\mathbbR^{3}$ of two dimensinal Riemannian manifolds with Gaussian curvature changing sign clearly,, Comm. Pure Appl. Math., 39 (1986), 867. doi: 10.1002/cpa.3160390607.

[10]

Q. Wang and C.-J. Xu, $C^{1,1}$ solution of the Dirichlet problem for degenerate k-Hessian equations,, Nonlinear Analysis, 104 (2014), 133. doi: 10.1016/j.na.2014.03.016.

[11]

X.-N. Ma and L. Xu, The convexity of solution of a class Hessian equation in bounded convex domain in $\mathbbR^3$,, Journal of Funct. Anal., 255 (2008), 1713. doi: 10.1016/j.jfa.2008.06.008.

[12]

X.-J. Wang, The $k$-Hessian equation,, Geometric Analysis and PDEs, 1977 (2009), 177. doi: 10.1007/978-3-642-01674-5_5.

[1]

Xie Li, Zhaoyin Xiang. Existence and nonexistence of local/global solutions for a nonhomogeneous heat equation. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1465-1480. doi: 10.3934/cpaa.2014.13.1465

[2]

Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo, Antonio Suárez. Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2018311

[3]

Tiancong Chen, Qing Han. Smooth local solutions to Weingarten equations and $\sigma_k$-equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 653-660. doi: 10.3934/dcds.2016.36.653

[4]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

[5]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[6]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011

[7]

Alexander V. Kolesnikov. Hessian metrics, $CD(K,N)$-spaces, and optimal transportation of log-concave measures. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1511-1532. doi: 10.3934/dcds.2014.34.1511

[8]

Rui Liu. Some new results on explicit traveling wave solutions of $K(m, n)$ equation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 633-646. doi: 10.3934/dcdsb.2010.13.633

[9]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[10]

Emmanuele DiBenedetto, Ugo Gianazza, Naian Liao. On the local behavior of non-negative solutions to a logarithmically singular equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1841-1858. doi: 10.3934/dcdsb.2012.17.1841

[11]

H. T. Liu. Impulsive effects on the existence of solutions for a fast diffusion equation. Conference Publications, 2001, 2001 (Special) : 248-253. doi: 10.3934/proc.2001.2001.248

[12]

Changchun Liu, Jingxue Yin, Juan Zhou. Existence of weak solutions for a generalized thin film equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 465-480. doi: 10.3934/cpaa.2007.6.465

[13]

Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859

[14]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

[15]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[16]

Keisuke Matsuya, Tetsuji Tokihiro. Existence and non-existence of global solutions for a discrete semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 209-220. doi: 10.3934/dcds.2011.31.209

[17]

Sylvie Oliffson Kamphorst, Sônia Pinto de Carvalho. Elliptic islands on the elliptical stadium. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 663-674. doi: 10.3934/dcds.2001.7.663

[18]

Yu-Zhu Wang, Yin-Xia Wang. Local existence of strong solutions to the three dimensional compressible MHD equations with partial viscosity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 851-866. doi: 10.3934/cpaa.2013.12.851

[19]

Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483

[20]

Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar. On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks & Heterogeneous Media, 2019, 14 (3) : 471-487. doi: 10.3934/nhm.2019019

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]