Citation: |
[1] |
J. F. Alves, C. Dias and S. Luzzatto, Geometry of expanding absolutely continuous invariant measures and the liftability problem, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 30 (2013), 101-120.doi: 10.1016/j.anihpc.2012.06.004. |
[2] |
J. F. Alves, J. M. Freitas, S. Luzzatto and S. Vaienti, From rates of mixing to recurrence times via large deviations, Advances in Mathematics, 228 (2011), 1203-1236.doi: 10.1016/j.aim.2011.06.014. |
[3] |
J. F. Alves and X. Li, Gibbs-Markov-Young structure with (stretched) exponential recurrence times for partially hyperbolic attractors, Adv. Math., 279 (2015), 405-437.doi: 10.1016/j.aim.2015.02.017. |
[4] |
J. F. Alves, S. Luzzatto and V. Pinheiro, Markov structures and decay of correlations for non-uniformly expanding dynamical systems, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 22 (2005), 817-839.doi: 10.1016/j.anihpc.2004.12.002. |
[5] |
J. F. Alves and V. Pinheiro, Slow rates of mixing for dynamical systems with hyperbolic structures, J. Stat. Phys., 131 (2008), 505-534.doi: 10.1007/s10955-008-9482-6. |
[6] |
J. F. Alves and D. Schnellmann, Ergodic properties of Viana-like maps with singularities in the base dynamics, Proceedings of the AMS, 141 (2013), 3943-3955.doi: 10.1090/S0002-9939-2013-11680-1. |
[7] |
A. Avez, Propriétés ergodiques des endomorphisms dilatants des variétés compactes, C.R. Acad. Sci. Paris Sér. A-B, 266 (1968), 610-612. |
[8] |
V. Baladi, Positive Transfer Operators and Decay of Correlations, World Scientific, 2000.doi: 10.1142/9789812813633. |
[9] |
V. Baladi and S. Gouëzel, Stretched exponential bounds for the correlations of the Viana-Alves skew products, Second Workshop on Dynamics and Randomness, Universidad de Chile, 2002. |
[10] |
M. Benedicks and L. Carleson, The dynamics of the Hénon map, Ann. Math., 122 (1985), 1-25.doi: 10.2307/1971367. |
[11] |
M. Benedicks and L.-S. Young, Sinai-Bowen-Ruelle measures for certain Hénon maps, Invent. Math., 112 (1993), 541-576.doi: 10.1007/BF01232446. |
[12] | |
[13] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer Lecture Notes in Math., 1975. |
[14] |
H. Bruin, S. Luzzatto and S. van Strien, Decay of correlations in one-dimensional dynamics, Annales de l'ENS, 36 (2003), 621-646.doi: 10.1016/S0012-9593(03)00025-9. |
[15] |
J. Buzzi and V. Maume-Deschamps, Decay of correlations on towers with non-Hölder Jacobian and non-exponential return time, Discrete and Continuous Dynam. Systems, 12 (2005), 639-656.doi: 10.3934/dcds.2005.12.639. |
[16] |
J. Buzzi, O. Sester and M. Tsujii, Weakly expanding skew-products of quadratic maps, Ergod. Th. Dynam. Syst., 23 (2003), 1401-1414.doi: 10.1017/S0143385702001694. |
[17] |
N. Chernov, Statistical properties of piecewise smooth hyperbolic systems in high dimensions, Discrete and Continuous Dynam. Systems, 5 (1999), 425-448.doi: 10.3934/dcds.1999.5.425. |
[18] |
N. Chernov, Decay of correlations and dispersing billiards, J. Stat. Phys., 94 (1999), 513-556.doi: 10.1023/A:1004581304939. |
[19] |
N. Chernov and R. Markarian, Chaotic Billiards, Mathematical Surveys and Monographs, Vol. 127, Amer. Math. Soc., Providence, RI, 2006.doi: 10.1090/surv/127. |
[20] |
K. Diaz-Ordaz, Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-Like maps, Discrete and Continuous Dynam. Systems, 15 (2006), 159-176.doi: 10.3934/dcds.2006.15.159. |
[21] |
K. Diaz-Ordaz, M. P. Holland and S. Luzzatto, Statistical properties of one-dimensional maps with critical points and singularities, Stochastics and Dynamics, 6 (2006), 423-458.doi: 10.1142/S0219493706001852. |
[22] |
S. Gouëzel, Decay of correlations for nonuniformly expanding systems, Bull. Soc. Math. France, 134 (2006), 1-31. |
[23] |
F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z., 180 (1982), 119-140.doi: 10.1007/BF01215004. |
[24] |
M. Holland, Slowly mixing systems and intermittency maps, Ergodic theory and Dynamical Systems, 25 (2004), 133-159.doi: 10.1017/S0143385704000343. |
[25] |
H. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergodic theory and Dynamical Systems, 24 (2004), 495-524.doi: 10.1017/S0143385703000671. |
[26] |
G. Keller and T. Nowicki, Spectral theory, zeta functions and the distributions of points for Collet-Eckman maps, Comm. Math. Phys., 149 (1992), 31-69.doi: 10.1007/BF02096623. |
[27] |
A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Transactions of The AMS, 186 (1973), 481-488.doi: 10.1090/S0002-9947-1973-0335758-1. |
[28] |
C. Liverani, Decay of correlations, Annals Math., 142 (1995), 239-301.doi: 10.2307/2118636. |
[29] |
C. Liverani, Multidimensional expanding maps with singularities: A pedestrian approach, Ergodic Theory and Dynamical Systems, 33 (2013), 168-182.doi: 10.1017/S0143385711000939. |
[30] |
A. Lopes, Entropy and large deviations, Nonlinearity, 3 (1990), 527-546.doi: 10.1088/0951-7715/3/2/013. |
[31] |
S. Luzzatto, Stochastic-like Behaviour in Non-Uniformly Expanding Maps, Handbook of Dynamical Systems Vol. 1B, Elsevier, 2006.doi: 10.1016/S1874-575X(06)80028-7. |
[32] |
S. Luzzatto and I. Melbourne, Statistical properties and decay of correlations for interval maps with critical points and singularities, Commun. Math. Phys., 320 (2013), 21-35.doi: 10.1007/s00220-013-1709-y. |
[33] |
V. Lynch, Non-uniformly Expanding Dynamical Systems and Decay of Correlations for Non-Hölder Continuous Observables, Ph.D thesis, University of Warwick, 2003. |
[34] |
V. Lynch, Decay of correlations for non-Hölder observables, Discrete and Continuous Dynam. Systems, 16 (2006), 19-46.doi: 10.3934/dcds.2006.16.19. |
[35] |
I. Melbourne and M. Nicol, Large deviations for nonuniformly hyperbolic systems, Transactions of AMS, 360 (2008), 6661-6676.doi: 10.1090/S0002-9947-08-04520-0. |
[36] |
I. Melbourne and M. Nicol, Almost sure invariance principle for nonuniformly hyperbolic systems, Commun. Math. Phys., 260 (2005), 131-146.doi: 10.1007/s00220-005-1407-5. |
[37] |
P. Natalini and B. Palumbo, Inequalities for the Incomplete Gamma function, Mathematical Inequalities & Applications, 3 (2000), 69-77.doi: 10.7153/mia-03-08. |
[38] |
T. Nowicki and S. van Strien, Absolutely continuous invariant measures for $C^2$ unimodal maps satisfying the Collet-Eckmann conditions, Invent. Math., 93 (1988), 619-635.doi: 10.1007/BF01410202. |
[39] |
V. Pinheiro, Expanding Measures, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 28 (2011), 889-939.doi: 10.1016/j.anihpc.2011.07.001. |
[40] |
M. Pollicott and M. Yuri, Statistical properties of maps with indifferent periodic points, Commun. Math. Phys., 217 (2001), 503-520.doi: 10.1007/s002200100368. |
[41] |
D. Ruelle, A measure associated with Axiom A attractors, Amer. J. Math., 98 (1976), 619-654.doi: 10.2307/2373810. |
[42] |
Y. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surveys, 27 (1972), 21-64. |
[43] |
Y. Sinai, Dynamical systems with elastic reflections, Ergodic properties of dispersing billiards, Russ. Math. Surveys, 25 (1970), 141-192. |
[44] |
T. Tao and V. H. Vu, Additive Combinatorics, Cambridge studies in advanced mathematics, 105, Cambridge University Press, Cambridge, 2006.doi: 10.1017/CBO9780511755149. |
[45] |
D. Thomine, A spectral gap for transfer operators of piecewise expanding maps, Discrete and continuous time Dynam. Systems, 30 (2011), 917-944.doi: 10.3934/dcds.2011.30.917. |
[46] |
L.-S. Young, Decay of correlations for certain quadratic maps, Comm. Math. Phys., 146 (1992), 123-138.doi: 10.1007/BF02099211. |
[47] |
L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math., 147 (1998), 585-650.doi: 10.2307/120960. |
[48] |
L.-S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153-188.doi: 10.1007/BF02808180. |