• Previous Article
    On the shape Conley index theory of semiflows on complete metric spaces
  • DCDS Home
  • This Issue
  • Next Article
    The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas
2016, 36(3): 1649-1659. doi: 10.3934/dcds.2016.36.1649

Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

2. 

School of Mathematical Sciences, Fudan University, Shanghai Key Laboratory for Contemporary Applied Mathematics, Shanghai 200433, China

Received  October 2014 Revised  March 2015 Published  August 2015

Let $M$ be a closed and smooth manifold and $H_\varepsilon:T^*M\to\mathbf{R}^1$ be a family of Tonelli Hamiltonians for $\varepsilon\geq0$ small. For each $\varphi\in C(M,\mathbf{R}^1)$, $T^\varepsilon_t\varphi(x)$ is the unique viscosity solution of the Cauchy problem \begin{align*} \left\{ \begin{array}{ll} d_tw+H_\varepsilon(x,d_xw)=0, & \ \mathrm{in}\ M\times(0,+\infty),\\ w|_{t=0}=\varphi, & \ \mathrm{on}\ M, \end{array} \right. \end{align*} where $T^\varepsilon_t$ is the Lax-Oleinik operator associated with $H_\varepsilon$. A result of Fathi asserts that the uniform limit, for $t\to+\infty$, of $T^\varepsilon_t\varphi+c_\varepsilon t$ exists and the limit $\bar{\varphi}_\varepsilon$ is a viscosity solution of the stationary Hamilton-Jacobi equation \begin{align*} H_\varepsilon(x,d_xu)=c_\varepsilon, \end{align*} where $c_\varepsilon$ is the unique $k$ for which the equation $H_\varepsilon(x,d_xu)=k$ admits viscosity solutions. In the present paper we discuss the continuous dependence of the viscosity solution $\bar{\varphi}_\varepsilon$ with respect to the parameter $\varepsilon$.
Citation: Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649
References:
[1]

P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation,, Math. Res. Lett., 14 (2007), 503. doi: 10.4310/MRL.2007.v14.n3.a14.

[2]

C. Cheng and J. Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems,, J. Differential Geom., 67 (2004), 457.

[3]

C. Cheng and J. Yan, Arnold diffusion in Hamiltonian systems: A priori unstable case,, J. Differential Geom., 82 (2009), 229.

[4]

G. Contreras, Action potential and weak KAM solutions,, Calc. Var. Partial Differential Equations, 13 (2001), 427. doi: 10.1007/s005260100081.

[5]

M. Crandall and P. Lions, Viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 277 (1983), 1. doi: 10.1090/S0002-9947-1983-0690039-8.

[6]

A. Fathi and J. Mather, Failure of convergence of the Lax-Oleinik semi-group in the time-periodic case,, Bull. Soc. Math. France, 128 (2000), 473.

[7]

A. Fathi, Weak KAM Theorems in Lagrangian Dynamics,, Seventh preliminary version, (2005).

[8]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, (1977).

[9]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995). doi: 10.1017/CBO9780511809187.

[10]

R. Mañé, Lagrangian flows: The dynamics of globally minimizing orbits,, Bol. Soc. Brasil. Mat. (N.S.), 28 (1997), 141. doi: 10.1007/BF01233389.

[11]

J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems,, Math. Z., 207 (1991), 169. doi: 10.1007/BF02571383.

[12]

J. Mather, Variational construction of connecting orbits,, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349. doi: 10.5802/aif.1377.

[13]

J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction,, Springer-Verlag, (1982).

[14]

A. Sorrentino, Lecture Notes on Mather's Theory for Lagrangian Systems,, preprint, (2010).

[15]

K. Wang and J. Yan, A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems,, Commun. Math. Phys., 309 (2012), 663. doi: 10.1007/s00220-011-1375-x.

[16]

A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds,, Advances in Math., 6 (1971), 329. doi: 10.1016/0001-8708(71)90020-X.

show all references

References:
[1]

P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation,, Math. Res. Lett., 14 (2007), 503. doi: 10.4310/MRL.2007.v14.n3.a14.

[2]

C. Cheng and J. Yan, Existence of diffusion orbits in a priori unstable Hamiltonian systems,, J. Differential Geom., 67 (2004), 457.

[3]

C. Cheng and J. Yan, Arnold diffusion in Hamiltonian systems: A priori unstable case,, J. Differential Geom., 82 (2009), 229.

[4]

G. Contreras, Action potential and weak KAM solutions,, Calc. Var. Partial Differential Equations, 13 (2001), 427. doi: 10.1007/s005260100081.

[5]

M. Crandall and P. Lions, Viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 277 (1983), 1. doi: 10.1090/S0002-9947-1983-0690039-8.

[6]

A. Fathi and J. Mather, Failure of convergence of the Lax-Oleinik semi-group in the time-periodic case,, Bull. Soc. Math. France, 128 (2000), 473.

[7]

A. Fathi, Weak KAM Theorems in Lagrangian Dynamics,, Seventh preliminary version, (2005).

[8]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, (1977).

[9]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995). doi: 10.1017/CBO9780511809187.

[10]

R. Mañé, Lagrangian flows: The dynamics of globally minimizing orbits,, Bol. Soc. Brasil. Mat. (N.S.), 28 (1997), 141. doi: 10.1007/BF01233389.

[11]

J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems,, Math. Z., 207 (1991), 169. doi: 10.1007/BF02571383.

[12]

J. Mather, Variational construction of connecting orbits,, Ann. Inst. Fourier (Grenoble), 43 (1993), 1349. doi: 10.5802/aif.1377.

[13]

J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction,, Springer-Verlag, (1982).

[14]

A. Sorrentino, Lecture Notes on Mather's Theory for Lagrangian Systems,, preprint, (2010).

[15]

K. Wang and J. Yan, A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems,, Commun. Math. Phys., 309 (2012), 663. doi: 10.1007/s00220-011-1375-x.

[16]

A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds,, Advances in Math., 6 (1971), 329. doi: 10.1016/0001-8708(71)90020-X.

[1]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

[2]

Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389

[3]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure & Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[4]

Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure & Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793

[5]

Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647

[6]

Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331

[7]

Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176

[8]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[9]

Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223

[10]

Piermarco Cannarsa, Marco Mazzola, Carlo Sinestrari. Global propagation of singularities for time dependent Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4225-4239. doi: 10.3934/dcds.2015.35.4225

[11]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[12]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

[13]

Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167

[14]

David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205

[15]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic & Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

[16]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[17]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[18]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[19]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[20]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]