# American Institute of Mathematical Sciences

April  2016, 36(4): 2347-2364. doi: 10.3934/dcds.2016.36.2347

## On the blow-up of solutions to the periodic modified integrable Camassa--Holm equation

 1 Department of Mathematics, Nanjing Forestry University, Nanjing 210036, China 2 Department of Mathematics, Southwest University, Chongqing 400715, China

Received  March 2015 Revised  April 2015 Published  September 2015

We derive conditions on the initial data, including cases where the initial momentum density is not of one sign, that produce blow-up of the induced solution to the periodic modified Camassa-Holm equation with cubic nonlinearity. The blow-up conditions and the blow-up rate are formulated in terms of the initial momentum density and the average initial energy.
Citation: Min Zhu, Shuanghu Zhang. On the blow-up of solutions to the periodic modified integrable Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2347-2364. doi: 10.3934/dcds.2016.36.2347
##### References:
 [1] A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z. [2] A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1. doi: 10.1142/S0219530507000857. [3] R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. [4] C. S. Cao, D. D. Holm and E. S. Titi, Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models,, J. Dynam. Differential Equations, 16 (2004), 167. doi: 10.1023/B:JODY.0000041284.26400.d0. [5] K. S. Chou and C. Z. Qu, Integrable equations arising from motions of plane curves I,, Physica D, 162 (2002), 9. doi: 10.1016/S0167-2789(01)00364-5. [6] A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321. doi: 10.5802/aif.1757. [7] A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London A, 457 (2001), 953. doi: 10.1098/rspa.2000.0701. [8] A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5. [9] A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. doi: 10.1007/BF02392586. [10] A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 26 (1998), 303. [11] A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. [12] A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559. doi: 10.4007/annals.2011.173.1.12. [13] A. Constantin and H. Kolev, Geodesic flow on the diffeomorphism group of the circle,, Comment. Math. Helv., 78 (2003), 787. doi: 10.1007/s00014-003-0785-6. [14] A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2. [15] A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. [16] A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. [17] A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (2000), 140. doi: 10.1016/S0375-9601(00)00255-3. [18] H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,, Acta Mech., 127 (1998), 193. doi: 10.1007/BF01170373. [19] A. Degasperis and M. Procesi, Asymptotic integrability,, in Symmetry and perturbation theory (ed. A. Degasperis & G. Gaeta), (1999), 23. [20] J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation,, Indiana Univ. Math. J., 56 (2007), 87. doi: 10.1512/iumj.2007.56.3040. [21] A. S. Fokas, On a class of physically important integrable equation,, Physica D, 87 (1995), 145. doi: 10.1016/0167-2789(95)00133-O. [22] Y. Fu, G. L. Gui, Y. Liu and C. Z. Qu, On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity,, J. Differential Equations, 255 (2013), 1905. doi: 10.1016/j.jde.2013.05.024. [23] B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation,, Physica D, 95 (1996), 229. doi: 10.1016/0167-2789(96)00048-6. [24] B. Fuchssteiner and A. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Physica D, 4 (): 47. doi: 10.1016/0167-2789(81)90004-X. [25] G. L. Gui, Y. Liu , P. Olver and C. Z. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation,, Comm. Math. Phy., 319 (2013), 731. doi: 10.1007/s00220-012-1566-0. [26] H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons,, Disc. Cont. Dyn. Syst. A., 14 (2006), 505. [27] D. Henry, Persistence properties for a family of nonlinear partial differential equations,, Nonlinear Analysis, 70 (2009), 1565. doi: 10.1016/j.na.2008.02.104. [28] S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group,, J. Math. Phys., 40 (1999), 857. doi: 10.1063/1.532690. [29] J. Lenells, A variational approach to the stability of periodic peakons,, J. Nonl. Math. Phys., 11 (2004), 151. doi: 10.2991/jnmp.2004.11.2.2. [30] Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Differential Equations, 162 (2000), 27. doi: 10.1006/jdeq.1999.3683. [31] Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation,, Comm. Math. Phys., 267 (2006), 801. doi: 10.1007/s00220-006-0082-5. [32] G. Misołek, A shallow water equation as a geodesic flow on the Bott-Virasoro group,, J. Geom. Phys., 24 (1998), 203. doi: 10.1016/S0393-0440(97)00010-7. [33] V. Novikov, Generalizations of the Camassa-Holm equation,, J. Phys. A, 42 (2009). doi: 10.1088/1751-8113/42/34/342002. [34] P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support,, Phys. Rev. E, 53 (1996), 1900. doi: 10.1103/PhysRevE.53.1900. [35] G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonlinear Anal., 46 (2001), 309. doi: 10.1016/S0362-546X(01)00791-X. [36] Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons,, J. Math. Phys., 47 (2006). doi: 10.1063/1.2365758. [37] C. Z. Qu, X. C. Liu and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic onlinearity,, Comm. Math. Phys., 322 (2013), 967. doi: 10.1007/s00220-013-1749-3. [38] J. F. Toland, Stokes waves, Topol,, Methods Nonlinear Anal., 7 (1996), 1. [39] Z. Yin, On the blow-up of solutions of the periodic Camassa-Holm equation,, Dyn. Cont. Discrete Impuls. Syst. Ser. A, 12 (2005), 375. [40] Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5. [41] Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation,, Comm. Partial Differential Equations, 27 (2000), 1815. doi: 10.1081/PDE-120016129.

show all references

##### References:
 [1] A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z. [2] A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1. doi: 10.1142/S0219530507000857. [3] R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. [4] C. S. Cao, D. D. Holm and E. S. Titi, Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models,, J. Dynam. Differential Equations, 16 (2004), 167. doi: 10.1023/B:JODY.0000041284.26400.d0. [5] K. S. Chou and C. Z. Qu, Integrable equations arising from motions of plane curves I,, Physica D, 162 (2002), 9. doi: 10.1016/S0167-2789(01)00364-5. [6] A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321. doi: 10.5802/aif.1757. [7] A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London A, 457 (2001), 953. doi: 10.1098/rspa.2000.0701. [8] A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5. [9] A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. doi: 10.1007/BF02392586. [10] A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 26 (1998), 303. [11] A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. [12] A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559. doi: 10.4007/annals.2011.173.1.12. [13] A. Constantin and H. Kolev, Geodesic flow on the diffeomorphism group of the circle,, Comment. Math. Helv., 78 (2003), 787. doi: 10.1007/s00014-003-0785-6. [14] A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2. [15] A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. [16] A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. [17] A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (2000), 140. doi: 10.1016/S0375-9601(00)00255-3. [18] H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,, Acta Mech., 127 (1998), 193. doi: 10.1007/BF01170373. [19] A. Degasperis and M. Procesi, Asymptotic integrability,, in Symmetry and perturbation theory (ed. A. Degasperis & G. Gaeta), (1999), 23. [20] J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation,, Indiana Univ. Math. J., 56 (2007), 87. doi: 10.1512/iumj.2007.56.3040. [21] A. S. Fokas, On a class of physically important integrable equation,, Physica D, 87 (1995), 145. doi: 10.1016/0167-2789(95)00133-O. [22] Y. Fu, G. L. Gui, Y. Liu and C. Z. Qu, On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity,, J. Differential Equations, 255 (2013), 1905. doi: 10.1016/j.jde.2013.05.024. [23] B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation,, Physica D, 95 (1996), 229. doi: 10.1016/0167-2789(96)00048-6. [24] B. Fuchssteiner and A. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Physica D, 4 (): 47. doi: 10.1016/0167-2789(81)90004-X. [25] G. L. Gui, Y. Liu , P. Olver and C. Z. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation,, Comm. Math. Phy., 319 (2013), 731. doi: 10.1007/s00220-012-1566-0. [26] H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons,, Disc. Cont. Dyn. Syst. A., 14 (2006), 505. [27] D. Henry, Persistence properties for a family of nonlinear partial differential equations,, Nonlinear Analysis, 70 (2009), 1565. doi: 10.1016/j.na.2008.02.104. [28] S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group,, J. Math. Phys., 40 (1999), 857. doi: 10.1063/1.532690. [29] J. Lenells, A variational approach to the stability of periodic peakons,, J. Nonl. Math. Phys., 11 (2004), 151. doi: 10.2991/jnmp.2004.11.2.2. [30] Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Differential Equations, 162 (2000), 27. doi: 10.1006/jdeq.1999.3683. [31] Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation,, Comm. Math. Phys., 267 (2006), 801. doi: 10.1007/s00220-006-0082-5. [32] G. Misołek, A shallow water equation as a geodesic flow on the Bott-Virasoro group,, J. Geom. Phys., 24 (1998), 203. doi: 10.1016/S0393-0440(97)00010-7. [33] V. Novikov, Generalizations of the Camassa-Holm equation,, J. Phys. A, 42 (2009). doi: 10.1088/1751-8113/42/34/342002. [34] P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support,, Phys. Rev. E, 53 (1996), 1900. doi: 10.1103/PhysRevE.53.1900. [35] G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonlinear Anal., 46 (2001), 309. doi: 10.1016/S0362-546X(01)00791-X. [36] Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons,, J. Math. Phys., 47 (2006). doi: 10.1063/1.2365758. [37] C. Z. Qu, X. C. Liu and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic onlinearity,, Comm. Math. Phys., 322 (2013), 967. doi: 10.1007/s00220-013-1749-3. [38] J. F. Toland, Stokes waves, Topol,, Methods Nonlinear Anal., 7 (1996), 1. [39] Z. Yin, On the blow-up of solutions of the periodic Camassa-Holm equation,, Dyn. Cont. Discrete Impuls. Syst. Ser. A, 12 (2005), 375. [40] Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5. [41] Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation,, Comm. Partial Differential Equations, 27 (2000), 1815. doi: 10.1081/PDE-120016129.
 [1] Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781 [2] Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115 [3] Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027 [4] Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067 [5] Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029 [6] Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501 [7] Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493 [8] Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042 [9] Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194 [10] Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011 [11] Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065 [12] Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047 [13] Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883 [14] Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159 [15] Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871 [16] Xingxing Liu. Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5505-5521. doi: 10.3934/dcds.2018242 [17] Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230 [18] Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic & Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305 [19] Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713 [20] Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

2017 Impact Factor: 1.179