May  2016, 36(5): 2729-2755. doi: 10.3934/dcds.2016.36.2729

From gradient theory of phase transition to a generalized minimal interface problem with a contact energy

1. 

Department of Mathematics, National Central University, Chung-Li 320, Taiwan

Received  June 2015 Revised  July 2015 Published  October 2015

We consider asymptotic behaviours of a variational problem $$ \inf_{u\in \mathcal A(m,f)} \int_\Omega \left\{\frac{\epsilon^2}{2} \left|\nabla u\right|^2 + \frac{V(x)}{2}u^2 + \frac{1}{4}u^4\right\}\,dx$$ over a admissible class $\mathcal A(m,f)=\{u\in W^{1,2}(\Omega):\,\int_\Omega u^2\,dx=m,\,u=f \textrm{ on }\partial \Omega\}$. The problem demonstrates some features of the phase separation in experimental studies of Bose-Einstein condensation confined in an infinite-trap potential. In this paper, we show the limiting variational problem is a generalized minimal interface problem involving a boundary contact energy. The asymptotic behaviour of the minimizers $\{u_\epsilon\}$ is characterized by a generalized mean curvature equation and a contact angle relation, the Young's relation, at the junction of the interfaces and the boundary. An example is given to demonstrate the possible existence of local minimizers $\{v_\epsilon\}_{\epsilon>0}$ for the perturbed variational problem due to suitable Dirichlet boundary condition $u=f$.
Citation: Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729
References:
[1]

A. Aftalion, Vortices in Bose-Einstein Condensates,, Birkhäuser, (2006).

[2]

A. Aftalion and J. Royo-Letelier, A mimimal interface problem arising from a two component Bose-Einstein condensate via $\Gamma$- convergence,, Calc. Var. Partial Differential Equations, 52 (2015), 165. doi: 10.1007/s00526-014-0708-y.

[3]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor,, Science, 269 (1995), 198. doi: 10.1126/science.269.5221.198.

[4]

S. N. Bose, Plancks Gesetz und Lichtquantenhypothese,, Zeitschrift für Physik, 26 (1924), 178. doi: 10.1007/BF01327326.

[5]

A. Braides, $\Gamma$-Convergence for Beginners,, Oxford University Press, (2002). doi: 10.1093/acprof:oso/9780198507840.001.0001.

[6]

R. Choksi and P. Sternberg, On the first and second variations of a nonlocal isoperimetric problem,, J. Reine Angew. Math., 611 (2007), 75. doi: 10.1515/CRELLE.2007.074.

[7]

G. Dal Maso, An Introduction to $\Gamma$-convergence,, Birkhäuser, (1993). doi: 10.1007/978-1-4612-0327-8.

[8]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463. doi: 10.1103/RevModPhys.71.463.

[9]

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. D. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms,, Phys. Rev. Lett., 75 (1995), 3969. doi: 10.1103/PhysRevLett.75.3969.

[10]

E. De Giorgi, Convergence problems for functionals and operators,, in Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (ed. E. Magenes, (1979), 131.

[11]

A. Einstein, Quantentheorie des einatomigen idealen Gases,, Sitzungsberichte der Preussischen Akademie der Wissenschaften, (1925), 3. doi: 10.1002/3527608958.ch27.

[12]

L. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations,, American Mathematical Society, (1990).

[13]

L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).

[14]

H. Federer, Geometric Measure Theory,, Springer-Verlag, (1969).

[15]

I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells,, Proc. Roy. Soc. Edingburgh Sect. A, 111 (1989), 89. doi: 10.1017/S030821050002504X.

[16]

M. Goldman and J. Royo-Letelier, Sharp interface limit for two components Bose-Einstein condensates,, ESAIM Control Optim. Calc. Var., 21 (2015), 603. doi: {10.1051/cocv/2014040}.

[17]

E. P. Gross, Structure of a quantized vortex in boson systems,, Nuovo Cimento, 20 (1961), 454. doi: 10.1007/BF02731494.

[18]

M. Gurtin, Some results and conjectures in the gradient theory of phase transitions,, in Metastability and incompletely posed problems (ed. Stuart, 3 (1987), 135. doi: 10.1007/978-1-4613-8704-6_9.

[19]

D. Hall, M. Matthews, C. Wieman and E. Cornell, Measurements of relative phase in binary mixtures of Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 1543. doi: 10.1103/PhysRevLett.81.1543.

[20]

K. Ishige, Singular perturbations of variational problems of vector valued functions,, Nonlinear Anal., 23 (1994), 1453. doi: 10.1016/0362-546X(94)90139-2.

[21]

K. Ishige, The gradient theory of the phase transitions in Cahn-Hilliard fluids with the Dirichlet boundary conditions,, SIAM J. Math. Anal., 27 (1996), 620. doi: 10.1137/0527034.

[22]

R. Kohn and P. Sternberg, Local minimiser and singular perturbations,, Proc. Roy. Soc. Edinburg Sect. A, 111 (1989), 69. doi: 10.1017/S0308210500025026.

[23]

F. Lin, X. B. Pan and C. Y. Wang, Phase transition for potentials of high-dimensional wells,, Cumm. Pure Appl. Math., 65 (2012), 833. doi: 10.1002/cpa.21386.

[24]

L. Modica, Gradient theory of phase transitions and minimal interface criterion,, Arch. Rational Mech. Anal., 98 (1987), 123. doi: 10.1007/BF00251230.

[25]

L. Modica, Gradient theory of phase transitions with boundary contact energy,, Ann Inst. H. Poincar'e Anal. Non Lin'eaire, 4 (1987), 487.

[26]

G. Modugno, M. Modugno, F. Riboli and M. Inguscio, A two atomic species superfluid,, Phys. Rev. Lett., 89 (2002), 190404. doi: 10.1103/PhysRevLett.89.190404.

[27]

R. Navarro, R. Carretero-González and P. G. Kevrekidis, Phase separation and dynamics of two-component Bose-Einstein condensates,, Phy. Rev. A, 80 (2009). doi: 10.1103/PhysRevA.80.023613.

[28]

N. Owen, Nonconvex variational problems with general singular perturbations,, Trans. Am. math. Soc., 310 (1988), 393. doi: 10.1090/S0002-9947-1988-0965760-9.

[29]

N. Owen and P. Sternberg, Nonconvex variational problems with anisotropic perturbations,, Nonlinear Anal., 16 (1991), 705. doi: 10.1016/0362-546X(91)90177-3.

[30]

N. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition,, Proc. Roy. Soc. London Ser. A, 429 (1990), 505. doi: 10.1098/rspa.1990.0071.

[31]

L. P. Pitaevskii, Vortex lines in an imperfect Bose gas,, Soviet Phys. JETP, 13 (1961), 451.

[32]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems,, Arch. Rational Mech. Anal., 101 (1988), 209. doi: 10.1007/BF00253122.

[33]

E. Timmermans, Phase separation of Bose-Einstein Condenstates,, Phys. Rev. Let., 81 (1998), 5718. doi: 10.1103/PhysRevLett.81.5718.

show all references

References:
[1]

A. Aftalion, Vortices in Bose-Einstein Condensates,, Birkhäuser, (2006).

[2]

A. Aftalion and J. Royo-Letelier, A mimimal interface problem arising from a two component Bose-Einstein condensate via $\Gamma$- convergence,, Calc. Var. Partial Differential Equations, 52 (2015), 165. doi: 10.1007/s00526-014-0708-y.

[3]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor,, Science, 269 (1995), 198. doi: 10.1126/science.269.5221.198.

[4]

S. N. Bose, Plancks Gesetz und Lichtquantenhypothese,, Zeitschrift für Physik, 26 (1924), 178. doi: 10.1007/BF01327326.

[5]

A. Braides, $\Gamma$-Convergence for Beginners,, Oxford University Press, (2002). doi: 10.1093/acprof:oso/9780198507840.001.0001.

[6]

R. Choksi and P. Sternberg, On the first and second variations of a nonlocal isoperimetric problem,, J. Reine Angew. Math., 611 (2007), 75. doi: 10.1515/CRELLE.2007.074.

[7]

G. Dal Maso, An Introduction to $\Gamma$-convergence,, Birkhäuser, (1993). doi: 10.1007/978-1-4612-0327-8.

[8]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463. doi: 10.1103/RevModPhys.71.463.

[9]

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. D. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms,, Phys. Rev. Lett., 75 (1995), 3969. doi: 10.1103/PhysRevLett.75.3969.

[10]

E. De Giorgi, Convergence problems for functionals and operators,, in Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (ed. E. Magenes, (1979), 131.

[11]

A. Einstein, Quantentheorie des einatomigen idealen Gases,, Sitzungsberichte der Preussischen Akademie der Wissenschaften, (1925), 3. doi: 10.1002/3527608958.ch27.

[12]

L. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations,, American Mathematical Society, (1990).

[13]

L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).

[14]

H. Federer, Geometric Measure Theory,, Springer-Verlag, (1969).

[15]

I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells,, Proc. Roy. Soc. Edingburgh Sect. A, 111 (1989), 89. doi: 10.1017/S030821050002504X.

[16]

M. Goldman and J. Royo-Letelier, Sharp interface limit for two components Bose-Einstein condensates,, ESAIM Control Optim. Calc. Var., 21 (2015), 603. doi: {10.1051/cocv/2014040}.

[17]

E. P. Gross, Structure of a quantized vortex in boson systems,, Nuovo Cimento, 20 (1961), 454. doi: 10.1007/BF02731494.

[18]

M. Gurtin, Some results and conjectures in the gradient theory of phase transitions,, in Metastability and incompletely posed problems (ed. Stuart, 3 (1987), 135. doi: 10.1007/978-1-4613-8704-6_9.

[19]

D. Hall, M. Matthews, C. Wieman and E. Cornell, Measurements of relative phase in binary mixtures of Bose-Einstein condensates,, Phys. Rev. Lett., 81 (1998), 1543. doi: 10.1103/PhysRevLett.81.1543.

[20]

K. Ishige, Singular perturbations of variational problems of vector valued functions,, Nonlinear Anal., 23 (1994), 1453. doi: 10.1016/0362-546X(94)90139-2.

[21]

K. Ishige, The gradient theory of the phase transitions in Cahn-Hilliard fluids with the Dirichlet boundary conditions,, SIAM J. Math. Anal., 27 (1996), 620. doi: 10.1137/0527034.

[22]

R. Kohn and P. Sternberg, Local minimiser and singular perturbations,, Proc. Roy. Soc. Edinburg Sect. A, 111 (1989), 69. doi: 10.1017/S0308210500025026.

[23]

F. Lin, X. B. Pan and C. Y. Wang, Phase transition for potentials of high-dimensional wells,, Cumm. Pure Appl. Math., 65 (2012), 833. doi: 10.1002/cpa.21386.

[24]

L. Modica, Gradient theory of phase transitions and minimal interface criterion,, Arch. Rational Mech. Anal., 98 (1987), 123. doi: 10.1007/BF00251230.

[25]

L. Modica, Gradient theory of phase transitions with boundary contact energy,, Ann Inst. H. Poincar'e Anal. Non Lin'eaire, 4 (1987), 487.

[26]

G. Modugno, M. Modugno, F. Riboli and M. Inguscio, A two atomic species superfluid,, Phys. Rev. Lett., 89 (2002), 190404. doi: 10.1103/PhysRevLett.89.190404.

[27]

R. Navarro, R. Carretero-González and P. G. Kevrekidis, Phase separation and dynamics of two-component Bose-Einstein condensates,, Phy. Rev. A, 80 (2009). doi: 10.1103/PhysRevA.80.023613.

[28]

N. Owen, Nonconvex variational problems with general singular perturbations,, Trans. Am. math. Soc., 310 (1988), 393. doi: 10.1090/S0002-9947-1988-0965760-9.

[29]

N. Owen and P. Sternberg, Nonconvex variational problems with anisotropic perturbations,, Nonlinear Anal., 16 (1991), 705. doi: 10.1016/0362-546X(91)90177-3.

[30]

N. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition,, Proc. Roy. Soc. London Ser. A, 429 (1990), 505. doi: 10.1098/rspa.1990.0071.

[31]

L. P. Pitaevskii, Vortex lines in an imperfect Bose gas,, Soviet Phys. JETP, 13 (1961), 451.

[32]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems,, Arch. Rational Mech. Anal., 101 (1988), 209. doi: 10.1007/BF00253122.

[33]

E. Timmermans, Phase separation of Bose-Einstein Condenstates,, Phys. Rev. Let., 81 (1998), 5718. doi: 10.1103/PhysRevLett.81.5718.

[1]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[2]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[3]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[4]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[5]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[6]

Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 1-18. doi: 10.3934/cpaa.2012.11.1

[7]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[8]

John W. Barrett, Harald Garcke, Robert Nürnberg. On sharp interface limits of Allen--Cahn/Cahn--Hilliard variational inequalities. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 1-14. doi: 10.3934/dcdss.2008.1.1

[9]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[10]

Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037

[11]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[12]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[13]

S. Maier-Paape, Ulrich Miller. Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1137-1153. doi: 10.3934/dcds.2006.15.1137

[14]

Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511

[15]

Amy Novick-Cohen, Andrey Shishkov. Upper bounds for coarsening for the degenerate Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 251-272. doi: 10.3934/dcds.2009.25.251

[16]

Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881

[17]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[18]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[19]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[20]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]