2016, 36(1): 303-321. doi: 10.3934/dcds.2016.36.303

Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds

1. 

Room 216, Lady Shaw Building, The Chinese University of Hong Kong, Shatin, Hong Kong, China

2. 

Department of Mathematics, Tianjin University, Tianjin, 300072, China, China

Received  April 2014 Revised  March 2015 Published  June 2015

Measure contraction properties are generalizations of the notion of Ricci curvature lower bounds in Riemannian geometry to more general metric measure spaces. In this paper, we give sufficient conditions for a Sasakian manifold equipped with a natural sub-Riemannian distance to satisfy these properties. Moreover, the sufficient conditions are defined by the Tanaka-Webster curvature. This generalizes the earlier work in [2] for the three dimensional case and in [19] for the Heisenberg group. To obtain our results we use the intrinsic Jacobi equations along sub-Riemannian extremals, coming from the theory of canonical moving frames for curves in Lagrangian Grassmannians [24,25]. The crucial new tool here is a certain decoupling of the corresponding matrix Riccati equation. It is also worth pointing out that our method leads to exact formulas for the measure contraction in the case of the corresponding homogeneous models in the considered class of sub-Riemannian structures.
Citation: Paul W. Y. Lee, Chengbo Li, Igor Zelenko. Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 303-321. doi: 10.3934/dcds.2016.36.303
References:
[1]

A. A. Agrachev and R. V. Gamkrelidze, Feedback-invariant optimal control theory - I. Regular extremals,, J. Dynamical and Control Systems, 3 (1997), 343. doi: 10.1007/BF02463256.

[2]

A. Agrachev and P. Lee, Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds,, Math. Ann., 360 (2014), 209. doi: 10.1007/s00208-014-1034-6.

[3]

A. Agrachev and P. Lee, Bishop and Laplacian comparison theorems on three dimensional contact subriemannian manifolds with symmetry,, J. Geom. Anal., 25 (2015), 512. doi: 10.1007/s12220-013-9437-2.

[4]

A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint,, Encyclopaedia of Mathematical Sciences, (2004). doi: 10.1007/978-3-662-06404-7.

[5]

A. Agrachev and I. Zelenko, Geometry of Jacobi curves. I,, J. Dynamical and Control systems, 8 (2002), 93. doi: 10.1023/A:1013904801414.

[6]

D. Bakry and M. Émery, Diffusions hypercontractives., in Séminaire de probabilités, 1123 (1985), 177. doi: 10.1007/BFb0075847.

[7]

F. Baudoin, M. Bonnefont and N. Garofalo, A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincare inequality,, Math. Ann., 358 (2014), 833. doi: 10.1007/s00208-013-0961-y.

[8]

F. Baudoin and N. Garofalo, Generalized Bochner formulas and Ricci lower bounds for sub-Riemannian manifolds of rank two,, preprint, ().

[9]

F. Baudoin and N. Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries,, preprint, ().

[10]

D. E. Blair, Contact Manifolds in Riemannian Geometry,, Lecture Notes in Mathematics, 509 ().

[11]

P. Cannarsa and L. Rifford, Semiconcavity results for optimal control problems admitting no singular minimizing controls,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 773. doi: 10.1016/j.anihpc.2007.07.005.

[12]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control,, Birkhhäuser, (2004).

[13]

S. Chanillo and P. Yang, Isoperimetric inequalities & volume comparison theorems on CR manifolds,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 8 (2009), 279.

[14]

T. Coulhon, I. Holopainen and L. Saloff-Coste, Harnack inequality and hyperbolicity for subelliptic p-Laplacians with applications to Picard type theorems,, Geom. Funct. Anal., 11 (2001), 1139. doi: 10.1007/s00039-001-8227-3.

[15]

D. B. A. Epstein, Complex hyperbolic geometry,, in Analytical and Geometric Aspects of Hyperbolic Space (ed. D.B.A. Epstein), 111 (1987), 93.

[16]

A. Figalli and L. Rifford, Mass Transportation on sub-Riemannian Manifolds,, Geom. Funct. Anal., 20 (2010), 124. doi: 10.1007/s00039-010-0053-z.

[17]

K. Hughen, The Geometry of Sub-Riemannian Three-Manifolds,, Ph.D. Dissertation, (1995).

[18]

D. Jerison, The Poincaŕe inequality for vector fields satisfying the Hörmander condition,, Duke Math. J., 53 (1986), 503. doi: 10.1215/S0012-7094-86-05329-9.

[19]

N. Juillet, Geometric inequalities and generalized ricci bounds in the heisenberg group,, Int. Math. Res. Not. IMRN, (2009), 2347. doi: 10.1093/imrn/rnp019.

[20]

P. W. Y. Lee, Displacement interpolations from a Hamiltonian point of view,, J. Func. Anal., 265 (2013), 3163. doi: 10.1016/j.jfa.2013.08.022.

[21]

P. W. Y. Lee and C. Li, Bishop and Laplacian comparison theorems on Sasakian manifolds, preprint,, , (2013).

[22]

P. W. Y. Lee, C. Li and I. Zelenko, Measure contraction properties of contact sub-Riemannian manifolds with symmetry, preprint,, , ().

[23]

J. J. Levin, On the matrix Riccati equation,, Proc. Amer. Math. Soc., 10 (1959), 519. doi: 10.1090/S0002-9939-1959-0108628-X.

[24]

C. Li and I. Zelenko, Parametrized curves in Lagrange Grassmannians,, C.R. Acad. Sci. Paris, 345 (2007), 647. doi: 10.1016/j.crma.2007.10.034.

[25]

C. Li and I. Zelenko, Differential geometry of curves in Lagrange Grassmannians with given Young diagram,, Differ. Geom. Appl., 27 (2009), 723. doi: 10.1016/j.difgeo.2009.07.002.

[26]

C.Li and I. Zelenko, Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries,, J. Geom. Phys., 61 (2011), 781. doi: 10.1016/j.geomphys.2010.12.009.

[27]

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport,, Ann. of Math. (2), 169 (2009), 903. doi: 10.4007/annals.2009.169.903.

[28]

J. Lott and C. Villani, Weak curvature conditions and functional inequalities,, J. Funct. Anal., 245 (2007), 311. doi: 10.1016/j.jfa.2006.10.018.

[29]

R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications,, Mathematical Surveys and Monographs, (2002).

[30]

S. Ohta, On the measure contraction property of metric measure spaces,, Comment. Math. Helv., 82 (2007), 805. doi: 10.4171/CMH/110.

[31]

S. Ohta, Finsler interpolation inequalities,, Calc. Var. Partial Differential Equations, 36 (2009), 211. doi: 10.1007/s00526-009-0227-4.

[32]

H. L. Royden, Comparison theorems for the matrix Riccati equation,, Comm. Pure Appl. Math., 41 (1988), 739. doi: 10.1002/cpa.3160410512.

[33]

T. Sakai, Riemannian Geometry,, Translations of Mathematical Monographs, (1996).

[34]

K. T. Sturm, On the geometry of metric measure spaces,, Acta Math., 196 (2006), 65. doi: 10.1007/s11511-006-0002-8.

[35]

K. T. Sturm, On the geometry of metric measure spaces II,, Acta Math., 196 (2006), 133. doi: 10.1007/s11511-006-0003-7.

[36]

N. Tanaka, A Differential Geometric Study on Strongly Pseudo-Convex Manifold,, Kinokunya Book Store Co., (1975).

[37]

S. Tanno, Variational problems on contact Riemannian manifolds,, Trans. Amer. Math. Soc., 314 (1989), 349. doi: 10.1090/S0002-9947-1989-1000553-9.

[38]

C. Villani, Optimal Transport. Old and new,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (2009). doi: 10.1007/978-3-540-71050-9.

[39]

J. Wang, Sub-Riemannian Heat Kernels on Model Spaces and Curvature-Dimension Inequalities on Contact Manifolds,, Ph.D. Dissertation, (2014).

[40]

S. M. Webster, Pseudo-Hermitian structures on a real hypersurface,, J. Differential Geometry, 13 (1978), 25.

show all references

References:
[1]

A. A. Agrachev and R. V. Gamkrelidze, Feedback-invariant optimal control theory - I. Regular extremals,, J. Dynamical and Control Systems, 3 (1997), 343. doi: 10.1007/BF02463256.

[2]

A. Agrachev and P. Lee, Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds,, Math. Ann., 360 (2014), 209. doi: 10.1007/s00208-014-1034-6.

[3]

A. Agrachev and P. Lee, Bishop and Laplacian comparison theorems on three dimensional contact subriemannian manifolds with symmetry,, J. Geom. Anal., 25 (2015), 512. doi: 10.1007/s12220-013-9437-2.

[4]

A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint,, Encyclopaedia of Mathematical Sciences, (2004). doi: 10.1007/978-3-662-06404-7.

[5]

A. Agrachev and I. Zelenko, Geometry of Jacobi curves. I,, J. Dynamical and Control systems, 8 (2002), 93. doi: 10.1023/A:1013904801414.

[6]

D. Bakry and M. Émery, Diffusions hypercontractives., in Séminaire de probabilités, 1123 (1985), 177. doi: 10.1007/BFb0075847.

[7]

F. Baudoin, M. Bonnefont and N. Garofalo, A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincare inequality,, Math. Ann., 358 (2014), 833. doi: 10.1007/s00208-013-0961-y.

[8]

F. Baudoin and N. Garofalo, Generalized Bochner formulas and Ricci lower bounds for sub-Riemannian manifolds of rank two,, preprint, ().

[9]

F. Baudoin and N. Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries,, preprint, ().

[10]

D. E. Blair, Contact Manifolds in Riemannian Geometry,, Lecture Notes in Mathematics, 509 ().

[11]

P. Cannarsa and L. Rifford, Semiconcavity results for optimal control problems admitting no singular minimizing controls,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 773. doi: 10.1016/j.anihpc.2007.07.005.

[12]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control,, Birkhhäuser, (2004).

[13]

S. Chanillo and P. Yang, Isoperimetric inequalities & volume comparison theorems on CR manifolds,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 8 (2009), 279.

[14]

T. Coulhon, I. Holopainen and L. Saloff-Coste, Harnack inequality and hyperbolicity for subelliptic p-Laplacians with applications to Picard type theorems,, Geom. Funct. Anal., 11 (2001), 1139. doi: 10.1007/s00039-001-8227-3.

[15]

D. B. A. Epstein, Complex hyperbolic geometry,, in Analytical and Geometric Aspects of Hyperbolic Space (ed. D.B.A. Epstein), 111 (1987), 93.

[16]

A. Figalli and L. Rifford, Mass Transportation on sub-Riemannian Manifolds,, Geom. Funct. Anal., 20 (2010), 124. doi: 10.1007/s00039-010-0053-z.

[17]

K. Hughen, The Geometry of Sub-Riemannian Three-Manifolds,, Ph.D. Dissertation, (1995).

[18]

D. Jerison, The Poincaŕe inequality for vector fields satisfying the Hörmander condition,, Duke Math. J., 53 (1986), 503. doi: 10.1215/S0012-7094-86-05329-9.

[19]

N. Juillet, Geometric inequalities and generalized ricci bounds in the heisenberg group,, Int. Math. Res. Not. IMRN, (2009), 2347. doi: 10.1093/imrn/rnp019.

[20]

P. W. Y. Lee, Displacement interpolations from a Hamiltonian point of view,, J. Func. Anal., 265 (2013), 3163. doi: 10.1016/j.jfa.2013.08.022.

[21]

P. W. Y. Lee and C. Li, Bishop and Laplacian comparison theorems on Sasakian manifolds, preprint,, , (2013).

[22]

P. W. Y. Lee, C. Li and I. Zelenko, Measure contraction properties of contact sub-Riemannian manifolds with symmetry, preprint,, , ().

[23]

J. J. Levin, On the matrix Riccati equation,, Proc. Amer. Math. Soc., 10 (1959), 519. doi: 10.1090/S0002-9939-1959-0108628-X.

[24]

C. Li and I. Zelenko, Parametrized curves in Lagrange Grassmannians,, C.R. Acad. Sci. Paris, 345 (2007), 647. doi: 10.1016/j.crma.2007.10.034.

[25]

C. Li and I. Zelenko, Differential geometry of curves in Lagrange Grassmannians with given Young diagram,, Differ. Geom. Appl., 27 (2009), 723. doi: 10.1016/j.difgeo.2009.07.002.

[26]

C.Li and I. Zelenko, Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries,, J. Geom. Phys., 61 (2011), 781. doi: 10.1016/j.geomphys.2010.12.009.

[27]

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport,, Ann. of Math. (2), 169 (2009), 903. doi: 10.4007/annals.2009.169.903.

[28]

J. Lott and C. Villani, Weak curvature conditions and functional inequalities,, J. Funct. Anal., 245 (2007), 311. doi: 10.1016/j.jfa.2006.10.018.

[29]

R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications,, Mathematical Surveys and Monographs, (2002).

[30]

S. Ohta, On the measure contraction property of metric measure spaces,, Comment. Math. Helv., 82 (2007), 805. doi: 10.4171/CMH/110.

[31]

S. Ohta, Finsler interpolation inequalities,, Calc. Var. Partial Differential Equations, 36 (2009), 211. doi: 10.1007/s00526-009-0227-4.

[32]

H. L. Royden, Comparison theorems for the matrix Riccati equation,, Comm. Pure Appl. Math., 41 (1988), 739. doi: 10.1002/cpa.3160410512.

[33]

T. Sakai, Riemannian Geometry,, Translations of Mathematical Monographs, (1996).

[34]

K. T. Sturm, On the geometry of metric measure spaces,, Acta Math., 196 (2006), 65. doi: 10.1007/s11511-006-0002-8.

[35]

K. T. Sturm, On the geometry of metric measure spaces II,, Acta Math., 196 (2006), 133. doi: 10.1007/s11511-006-0003-7.

[36]

N. Tanaka, A Differential Geometric Study on Strongly Pseudo-Convex Manifold,, Kinokunya Book Store Co., (1975).

[37]

S. Tanno, Variational problems on contact Riemannian manifolds,, Trans. Amer. Math. Soc., 314 (1989), 349. doi: 10.1090/S0002-9947-1989-1000553-9.

[38]

C. Villani, Optimal Transport. Old and new,, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (2009). doi: 10.1007/978-3-540-71050-9.

[39]

J. Wang, Sub-Riemannian Heat Kernels on Model Spaces and Curvature-Dimension Inequalities on Contact Manifolds,, Ph.D. Dissertation, (2014).

[40]

S. M. Webster, Pseudo-Hermitian structures on a real hypersurface,, J. Differential Geometry, 13 (1978), 25.

[1]

Martins Bruveris. Completeness properties of Sobolev metrics on the space of curves. Journal of Geometric Mechanics, 2015, 7 (2) : 125-150. doi: 10.3934/jgm.2015.7.125

[2]

Farid Tari. Geometric properties of the integral curves of an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 349-364. doi: 10.3934/dcds.2007.17.349

[3]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[4]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[5]

Nicolas Dirr, Federica Dragoni, Max von Renesse. Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach. Communications on Pure & Applied Analysis, 2010, 9 (2) : 307-326. doi: 10.3934/cpaa.2010.9.307

[6]

Erlend Grong, Alexander Vasil’ev. Sub-Riemannian and sub-Lorentzian geometry on $SU(1,1)$ and on its universal cover. Journal of Geometric Mechanics, 2011, 3 (2) : 225-260. doi: 10.3934/jgm.2011.3.225

[7]

Daniel Genin, Serge Tabachnikov. On configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards. Journal of Modern Dynamics, 2007, 1 (2) : 155-173. doi: 10.3934/jmd.2007.1.155

[8]

Stefan Sommer, Anne Marie Svane. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 391-410. doi: 10.3934/jgm.2017015

[9]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[10]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[11]

J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford and Masahico Saito. State-sum invariants of knotted curves and surfaces from quandle cohomology. Electronic Research Announcements, 1999, 5: 146-156.

[12]

Alice B. Tumpach, Stephen C. Preston. Quotient elastic metrics on the manifold of arc-length parameterized plane curves. Journal of Geometric Mechanics, 2017, 9 (2) : 227-256. doi: 10.3934/jgm.2017010

[13]

Lei Zhang, Anfu Zhu, Aiguo Wu, Lingling Lv. Parametric solutions to the regulator-conjugate matrix equations. Journal of Industrial & Management Optimization, 2017, 13 (2) : 623-631. doi: 10.3934/jimo.2016036

[14]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[15]

Wei-guo Wang, Wei-chao Wang, Ren-cang Li. Deflating irreducible singular M-matrix algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 491-518. doi: 10.3934/naco.2013.3.491

[16]

Pablo Angulo. Linking curves, sutured manifolds and the Ambrose conjecture for generic 3-manifolds. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 1-41. doi: 10.3934/dcds.2018001

[17]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[18]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[19]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[20]

Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]