January  2016, 36(1): 43-61. doi: 10.3934/dcds.2016.36.43

The structure of dendrites constructed by pointwise P-expansive maps on the unit interval

1. 

Research and Support Center on Higher Education, for the Hearing Impaired and Visually Impaired, Tsukuba University of Technology, Ibaraki 305-8520, Japan

Received  May 2014 Revised  March 2015 Published  June 2015

Let $f$ be a continuous map from the unit interval to itself. In this paper, we investigate the structure of space $Z$ which is constructed corresponding to the behaviors of $f$ and a periodic orbit $P$ of $f$. Under some restriction of $f$, we get necessary and sufficient conditions for $Z$ being the universal dendrite. Furthermore $Z$ is classified into five types especially when it is a tree.
Citation: Tatsuya Arai. The structure of dendrites constructed by pointwise P-expansive maps on the unit interval. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 43-61. doi: 10.3934/dcds.2016.36.43
References:
[1]

L. Alseda, S. Baldwin, J. Llibre and M. Misiurewicz, Entropy of transitive tree maps,, Topology, 36 (1997), 519.  doi: 10.1016/0040-9383(95)00070-4.  Google Scholar

[2]

T. Arai and N. Chinen, The construction of chaotic maps in the sense of Devaney on dendrites which commute to continuous maps on the unit interval,, Discrete Continuous Dynam. Systems - A, 11 (2004), 547.  doi: 10.3934/dcds.2004.11.547.  Google Scholar

[3]

T. Arai, N. Chinen, H. Kato and K. Yokoi, The construction of P-expansive maps of regular continua : A geometric approach,, Topology Appl., 103 (2000), 309.  doi: 10.1016/S0166-8641(99)00004-8.  Google Scholar

[4]

S. Baldwin, Toward a theory of forcing on maps of trees,, Int. J. Bifurcation and Chaos, 8 (1995), 45.   Google Scholar

[5]

L. S. Block and W. A. Coppel, Dynamics in One Dimension,, Lecture Notes in Math. 1513, 1513 (1992).   Google Scholar

[6]

S. B. Nadler Jr, Continuum Theory An Introduction,, Pure and Appl. Math. 158, 158 (1992).   Google Scholar

show all references

References:
[1]

L. Alseda, S. Baldwin, J. Llibre and M. Misiurewicz, Entropy of transitive tree maps,, Topology, 36 (1997), 519.  doi: 10.1016/0040-9383(95)00070-4.  Google Scholar

[2]

T. Arai and N. Chinen, The construction of chaotic maps in the sense of Devaney on dendrites which commute to continuous maps on the unit interval,, Discrete Continuous Dynam. Systems - A, 11 (2004), 547.  doi: 10.3934/dcds.2004.11.547.  Google Scholar

[3]

T. Arai, N. Chinen, H. Kato and K. Yokoi, The construction of P-expansive maps of regular continua : A geometric approach,, Topology Appl., 103 (2000), 309.  doi: 10.1016/S0166-8641(99)00004-8.  Google Scholar

[4]

S. Baldwin, Toward a theory of forcing on maps of trees,, Int. J. Bifurcation and Chaos, 8 (1995), 45.   Google Scholar

[5]

L. S. Block and W. A. Coppel, Dynamics in One Dimension,, Lecture Notes in Math. 1513, 1513 (1992).   Google Scholar

[6]

S. B. Nadler Jr, Continuum Theory An Introduction,, Pure and Appl. Math. 158, 158 (1992).   Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]