2016, 36(1): 541-570. doi: 10.3934/dcds.2016.36.541

Dynnikov and train track transition matrices of pseudo-Anosov braids

1. 

Dicle University, Mathematics Department, 21280, Diyarbakır, Turkey

Received  May 2014 Revised  May 2015 Published  June 2015

We compare the spectra of Dynnikov matrices with the spectra of the train track transition matrices of a given pseudo-Anosov braid on the finitely punctured disk, and show that these matrices are isospectral up to roots of unity and zeros under some particular conditions. It is shown, via examples, that Dynnikov matrices are much easier to compute than transition matrices, and so yield data that was previously inaccessible.
Citation: S. Öykü Yurttaş. Dynnikov and train track transition matrices of pseudo-Anosov braids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 541-570. doi: 10.3934/dcds.2016.36.541
References:
[1]

E. Artin, Theorie der Zöpfe,, Abh. Math. Sem. Univ. Hamburg, 4 (1925), 47. doi: 10.1007/BF02950718.

[2]

E. Artin, Theory of braids,, Ann. of Math. (2), 48 (1947), 101. doi: 10.2307/1969218.

[3]

M. Bestvina and M. Handel, Train-tracks for surface homeomorphisms,, Topology, 34 (1995), 109. doi: 10.1016/0040-9383(94)E0009-9.

[4]

J. Birman, P. Brinkmann and K. Kawamuro, A polynomial invariant of pseudo-Anosov maps,, Journal of Topology and Analysis, 4 (2012), 13. doi: 10.1142/S1793525312500033.

[5]

P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest, Why are Braids Orderable?, vol. 14 of Panoramas et Synthèses [Panoramas and Syntheses],, Société Mathématique de France, (2002).

[6]

P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest, Ordering Braids, vol. 148 of Mathematical Surveys and Monographs,, American Mathematical Society, (2008). doi: 10.1090/surv/148.

[7]

I. Dynnikov, On a Yang-Baxter mapping and the Dehornoy ordering,, Uspekhi Mat. Nauk, 57 (2002), 151. doi: 10.1070/RM2002v057n03ABEH000519.

[8]

A. Fathi, F. Laudenbach and V. Poenaru, Travaux de Thurston Sur les Surfaces, vol. 66 of Astérisque,, Société Mathématique de France, (1979).

[9]

J. Franks and M. Misiurewicz, Cycles for disk homeomorphisms and thick trees,, in Nielsen theory and dynamical systems (South Hadley, (1993), 69. doi: 10.1090/conm/152/01319.

[10]

T. Hall, Software available for download from:, , ().

[11]

T. Hall and S. Ö. Yurttaş, On the topological entropy of families of braids,, Topology Appl., 156 (2009), 1554. doi: 10.1016/j.topol.2009.01.005.

[12]

J. Los, Pseudo-Anosov maps and invariant train tracks in the disc: A finite algorithm,, Proc. London Math. Soc. (3), 66 (1993), 400. doi: 10.1112/plms/s3-66.2.400.

[13]

L. Mosher, Train track expansions of measured foliations, 2003,, Preprint available from , ().

[14]

J.-O. Moussafir, On computing the entropy of braids,, Funct. Anal. Other Math., 1 (2006), 37.

[15]

R. C. Penner and J. L. Harer, Combinatorics of Train Tracks, vol. 125 of Annals of Mathematics Studies,, Princeton University Press, (1992).

[16]

E. Rykken, Expanding factors for pseudo-anosov homeomorphisms,, Rocky Mountain J. Math., 28 (1998), 1103. doi: 10.1216/rmjm/1181071758.

[17]

W. P. Thurston, n the geometry and dynamics of diffeomorphisms of surfaces,, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417. doi: 10.1090/S0273-0979-1988-15685-6.

[18]

S. Ö. Yurttaş, Geometric intersection of curves on punctured disks,, Journal of the Mathematical Society of Japan, 65 (2013), 1554. doi: 10.2969/jmsj/06541153.

show all references

References:
[1]

E. Artin, Theorie der Zöpfe,, Abh. Math. Sem. Univ. Hamburg, 4 (1925), 47. doi: 10.1007/BF02950718.

[2]

E. Artin, Theory of braids,, Ann. of Math. (2), 48 (1947), 101. doi: 10.2307/1969218.

[3]

M. Bestvina and M. Handel, Train-tracks for surface homeomorphisms,, Topology, 34 (1995), 109. doi: 10.1016/0040-9383(94)E0009-9.

[4]

J. Birman, P. Brinkmann and K. Kawamuro, A polynomial invariant of pseudo-Anosov maps,, Journal of Topology and Analysis, 4 (2012), 13. doi: 10.1142/S1793525312500033.

[5]

P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest, Why are Braids Orderable?, vol. 14 of Panoramas et Synthèses [Panoramas and Syntheses],, Société Mathématique de France, (2002).

[6]

P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest, Ordering Braids, vol. 148 of Mathematical Surveys and Monographs,, American Mathematical Society, (2008). doi: 10.1090/surv/148.

[7]

I. Dynnikov, On a Yang-Baxter mapping and the Dehornoy ordering,, Uspekhi Mat. Nauk, 57 (2002), 151. doi: 10.1070/RM2002v057n03ABEH000519.

[8]

A. Fathi, F. Laudenbach and V. Poenaru, Travaux de Thurston Sur les Surfaces, vol. 66 of Astérisque,, Société Mathématique de France, (1979).

[9]

J. Franks and M. Misiurewicz, Cycles for disk homeomorphisms and thick trees,, in Nielsen theory and dynamical systems (South Hadley, (1993), 69. doi: 10.1090/conm/152/01319.

[10]

T. Hall, Software available for download from:, , ().

[11]

T. Hall and S. Ö. Yurttaş, On the topological entropy of families of braids,, Topology Appl., 156 (2009), 1554. doi: 10.1016/j.topol.2009.01.005.

[12]

J. Los, Pseudo-Anosov maps and invariant train tracks in the disc: A finite algorithm,, Proc. London Math. Soc. (3), 66 (1993), 400. doi: 10.1112/plms/s3-66.2.400.

[13]

L. Mosher, Train track expansions of measured foliations, 2003,, Preprint available from , ().

[14]

J.-O. Moussafir, On computing the entropy of braids,, Funct. Anal. Other Math., 1 (2006), 37.

[15]

R. C. Penner and J. L. Harer, Combinatorics of Train Tracks, vol. 125 of Annals of Mathematics Studies,, Princeton University Press, (1992).

[16]

E. Rykken, Expanding factors for pseudo-anosov homeomorphisms,, Rocky Mountain J. Math., 28 (1998), 1103. doi: 10.1216/rmjm/1181071758.

[17]

W. P. Thurston, n the geometry and dynamics of diffeomorphisms of surfaces,, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417. doi: 10.1090/S0273-0979-1988-15685-6.

[18]

S. Ö. Yurttaş, Geometric intersection of curves on punctured disks,, Journal of the Mathematical Society of Japan, 65 (2013), 1554. doi: 10.2969/jmsj/06541153.

[1]

Chris Johnson, Martin Schmoll. Pseudo-Anosov eigenfoliations on Panov planes. Electronic Research Announcements, 2014, 21: 89-108. doi: 10.3934/era.2014.21.89

[2]

Kariane Calta, Thomas A. Schmidt. Infinitely many lattice surfaces with special pseudo-Anosov maps. Journal of Modern Dynamics, 2013, 7 (2) : 239-254. doi: 10.3934/jmd.2013.7.239

[3]

Hieu Trung Do, Thomas A. Schmidt. New infinite families of pseudo-Anosov maps with vanishing Sah-Arnoux-Fathi invariant. Journal of Modern Dynamics, 2016, 10: 541-561. doi: 10.3934/jmd.2016.10.541

[4]

Jung-Chao Ban, Song-Sun Lin. Patterns generation and transition matrices in multi-dimensional lattice models. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 637-658. doi: 10.3934/dcds.2005.13.637

[5]

Zenonas Navickas, Rasa Smidtaite, Alfonsas Vainoras, Minvydas Ragulskis. The logistic map of matrices. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 927-944. doi: 10.3934/dcdsb.2011.16.927

[6]

Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci. On a spike train probability model with interacting neural units. Mathematical Biosciences & Engineering, 2014, 11 (2) : 217-231. doi: 10.3934/mbe.2014.11.217

[7]

Joseph Bayara, André Conseibo, Moussa Ouattara, Artibano Micali. Train algebras of degree 2 and exponent 3. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1371-1386. doi: 10.3934/dcdss.2011.4.1371

[8]

Björn Gebhard. A note concerning a property of symplectic matrices. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2135-2137. doi: 10.3934/cpaa.2018101

[9]

Janusz Mierczyński. Averaging in random systems of nonnegative matrices. Conference Publications, 2015, 2015 (special) : 835-840. doi: 10.3934/proc.2015.0835

[10]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

[11]

Delio Mugnolo. Dynamical systems associated with adjacency matrices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1945-1973. doi: 10.3934/dcdsb.2018190

[12]

Hiroyuki Torikai. Basic spike-train properties of a digital spiking neuron. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 183-198. doi: 10.3934/dcdsb.2008.9.183

[13]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences & Engineering, 2016, 13 (3) : 483-493. doi: 10.3934/mbe.2016002

[14]

Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel, Sabine Wittevrongel. Performance analysis of buffers with train arrivals and correlated output interruptions. Journal of Industrial & Management Optimization, 2015, 11 (3) : 829-848. doi: 10.3934/jimo.2015.11.829

[15]

Piotr Gwiazda, Karolina Kropielnicka, Anna Marciniak-Czochra. The Escalator Boxcar Train method for a system of age-structured equations. Networks & Heterogeneous Media, 2016, 11 (1) : 123-143. doi: 10.3934/nhm.2016.11.123

[16]

Chinmay Kumar Giri. Index-proper nonnegative splittings of matrices. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 103-113. doi: 10.3934/naco.2016002

[17]

Ferenc Szöllősi. On quaternary complex Hadamard matrices of small orders. Advances in Mathematics of Communications, 2011, 5 (2) : 309-315. doi: 10.3934/amc.2011.5.309

[18]

Barbara A. Shipman. Compactified isospectral sets of complex tridiagonal Hessenberg matrices. Conference Publications, 2003, 2003 (Special) : 788-797. doi: 10.3934/proc.2003.2003.788

[19]

David Damanik, Jake Fillman, Milivoje Lukic, William Yessen. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1009-1023. doi: 10.3934/dcdss.2016039

[20]

B. Cantó, C. Coll, E. Sánchez. The problem of global identifiability for systems with tridiagonal matrices. Conference Publications, 2011, 2011 (Special) : 250-257. doi: 10.3934/proc.2011.2011.250

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]