February  2016, 36(2): 571-575. doi: 10.3934/dcds.2016.36.571

In memory of professor Rouhuai Wang (1924-2001): A pioneering Chinese researcher in partial differential equations

1. 

School of Mathematical Sciences, Peking University, Beijing 100871

Received  November 2013 Published  August 2015

N/A
Citation: Kung-Ching Chang. In memory of professor Rouhuai Wang (1924-2001): A pioneering Chinese researcher in partial differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 571-575. doi: 10.3934/dcds.2016.36.571
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I and II,, Comm. Pure Appl. Math., 12 (1959), 623.

[2]

L. Caffarelli, J. J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, I and II,, Comm. Pure Appl. Math., 37 (1984), 369. doi: 10.1002/cpa.3160380206.

[3]

C. B. Morrey, On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations, I and II,, Amer. J. Math., 80 (1958), 198.

[4]

R. Wang, Analyticity of the solutions of analytic nonlinear general elliptic boundary value problems, and some results about linear problems,, Natural Science Journal of Jilin University, 1 (1963), 403. doi: 10.1007/s11464-006-0016-8.

[5]

R. Wang, On the Schauder-type theory for general parabolic boundary value problems,, Natural Science Journal of Jilin University, (1964), 35.

[6]

R. Wang, A Fourier Method on the $L^p$ theory of parabolic and elliptic boundary value problems,, Scientia Sinica, 14 (1965), 1373.

[7]

R. Wang, Another construction of Maslov-Arnol'd index,, Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, 1, 2, 3 (1982), 1525.

[8]

R. Wang and Z. Cui, Generalized Leray formula on positive complex Lagrange-Grassmann manifolds,, Chinese Ann. Math. Ser. B, 5 (1984), 215.

[9]

R. Wang and Ch. Li, On the $L^p$-boundedness of several classes of psudodifferential operators,, Chinese Ann. Math. Ser B, 5 (1984), 193.

[10]

R. Wang and G. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial-boundary value problems to parabolic Monge-Ampère equation,, Northeast Math. J., 8 (1992), 417.

[11]

R. Wang and G. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation,, J. Partial Differential Equations, 6 (1993), 237.

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I and II,, Comm. Pure Appl. Math., 12 (1959), 623.

[2]

L. Caffarelli, J. J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, I and II,, Comm. Pure Appl. Math., 37 (1984), 369. doi: 10.1002/cpa.3160380206.

[3]

C. B. Morrey, On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations, I and II,, Amer. J. Math., 80 (1958), 198.

[4]

R. Wang, Analyticity of the solutions of analytic nonlinear general elliptic boundary value problems, and some results about linear problems,, Natural Science Journal of Jilin University, 1 (1963), 403. doi: 10.1007/s11464-006-0016-8.

[5]

R. Wang, On the Schauder-type theory for general parabolic boundary value problems,, Natural Science Journal of Jilin University, (1964), 35.

[6]

R. Wang, A Fourier Method on the $L^p$ theory of parabolic and elliptic boundary value problems,, Scientia Sinica, 14 (1965), 1373.

[7]

R. Wang, Another construction of Maslov-Arnol'd index,, Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, 1, 2, 3 (1982), 1525.

[8]

R. Wang and Z. Cui, Generalized Leray formula on positive complex Lagrange-Grassmann manifolds,, Chinese Ann. Math. Ser. B, 5 (1984), 215.

[9]

R. Wang and Ch. Li, On the $L^p$-boundedness of several classes of psudodifferential operators,, Chinese Ann. Math. Ser B, 5 (1984), 193.

[10]

R. Wang and G. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial-boundary value problems to parabolic Monge-Ampère equation,, Northeast Math. J., 8 (1992), 417.

[11]

R. Wang and G. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation,, J. Partial Differential Equations, 6 (1993), 237.

[1]

Dellacherie Stéphane. On the Wang Chang-Uhlenbeck equations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 229-253. doi: 10.3934/dcdsb.2003.3.229

[2]

Alexander A. Kovalevsky, Andrey Shishkov. To the memory of Professor Igor V. Skrypnik. Communications on Pure & Applied Analysis, 2013, 12 (4) : i-v. doi: 10.3934/cpaa.2013.12.4i

[3]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[4]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[5]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[6]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[7]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[8]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

[9]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[10]

Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control & Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231

[11]

Enrique Zuazua. Controllability of partial differential equations and its semi-discrete approximations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 469-513. doi: 10.3934/dcds.2002.8.469

[12]

Paul Bracken. Connections of zero curvature and applications to nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1165-1179. doi: 10.3934/dcdss.2014.7.1165

[13]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

[14]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[15]

Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065

[16]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[17]

Frédéric Gibou, Doron Levy, Carlos Cárdenas, Pingyu Liu, Arthur Boyer. Partial Differential Equations-Based Segmentation for Radiotherapy Treatment Planning. Mathematical Biosciences & Engineering, 2005, 2 (2) : 209-226. doi: 10.3934/mbe.2005.2.209

[18]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[19]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

[20]

Antonio Cañada, Salvador Villegas. Lyapunov inequalities for partial differential equations at radial higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 111-122. doi: 10.3934/dcds.2013.33.111

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]