\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Polyharmonic equations with critical exponential growth in the whole space $ \mathbb{R}^{n}$

Abstract / Introduction Related Papers Cited by
  • In this paper, we apply the sharp Adams-type inequalities for the Sobolev space $W^{m,\frac{n}{m}}\left( \mathbb{R} ^{n}\right) $ for any positive real number $m$ less than $n$, established by Ruf and Sani [46] and Lam and Lu [30,31], to study polyharmonic equations in $\mathbb{R}^{2m}$. We will consider the polyharmonic equations in $\mathbb{R}^{2m}$ of the form \[ \left( I-\Delta\right) ^{m}u=f(x,u)\text{ in }% \mathbb{R} ^{2m}. \] We study the existence of the nontrivial solutions when the nonlinear terms have the critical exponential growth in the sense of Adams' inequalities on the entire Euclidean space. Our approach is variational methods such as the Mountain Pass Theorem ([5]) without Palais-Smale condition combining with a version of a result due to Lions ([39,40]) for the critical growth case. Moreover, using the regularity lifting by contracting operators and regularity lifting by combinations of contracting and shrinking operators developed in [14] and [11], we will prove that our solutions are uniformly bounded and Lipschitz continuous. Finally, using the moving plane method of Gidas, Ni and Nirenberg [22,23] in integral form developed by Chen, Li and Ou [12] together with the Hardy-Littlewood-Sobolev type inequality instead of the maximum principle, we prove our positive solutions are radially symmetric and monotone decreasing about some point. This appears to be the first work concerning existence of nontrivial nonnegative solutions of the Bessel type polyharmonic equation with exponential growth of the nonlinearity in the whole Euclidean space.
    Mathematics Subject Classification: Primary: 35J91, 35J61; Secondary: 35J35, 35J30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2) 128 (1988), 385-398.doi: 10.2307/1971445.

    [2]

    Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n-$Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 393-413.

    [3]

    C. O. Alves, P. C. Carrião and O. H. Miyagaki, Nonlinear perturbations of a periodic elliptic problem with critical growth, J. Math. Anal. Appl., 260 (2001), 133-146.doi: 10.1006/jmaa.2001.7442.

    [4]

    C. O. Alves, J. M. do Ó and O. H. Miyagaki, On nonlinear perturbations of a periodic elliptic problem in $ \mathbbR ^{2}$ involving critical growth, Nonlinear Anal., 56 (2004), 781-791.doi: 10.1016/j.na.2003.06.003.

    [5]

    A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.doi: 10.1016/0022-1236(73)90051-7.

    [6]

    F. V. Atkinson and L. A. Peletier, Ground states and Dirichlet problems for $-\Delta u=f(u)$ in $ \mathbbR ^{2}$, Arch. Rational Mech. Anal., 96 (1986), 147-165.doi: 10.1007/BF00251409.

    [7]

    H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555.

    [8]

    D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $ \mathbbR ^{2}$, Comm. Partial Differential Equations, 17 (1992), 407-435.doi: 10.1080/03605309208820848.

    [9]

    L. Carleson and S.-Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2), 110 (1986), 113-127.

    [10]

    K. C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005.

    [11]

    W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Series on Differential Equations & Dynamical Systems, 4. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2010. xii+299 pp.

    [12]

    W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.doi: 10.1002/cpa.20116.

    [13]

    W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems, J. Math. Anal. Appl., 377 (2011), 744-753.doi: 10.1016/j.jmaa.2010.11.035.

    [14]

    C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Adv. Math., 226 (2011), 2676-2699.doi: 10.1016/j.aim.2010.07.020.

    [15]

    V. Coti Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $ \mathbbR ^n$, Comm. Pure Appl. Math., 45 (1992), 1217-1269.doi: 10.1002/cpa.3160451002.

    [16]

    D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $ \mathbbR ^{2}$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.doi: 10.1007/BF01205003.

    [17]

    J. M. do Ó, E. Medeiros and U. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in $ \mathbbR ^N$, J. Differential Equations, 246 (2009), 1363-1386.doi: 10.1016/j.jde.2008.11.020.

    [18]

    M. J. Esteban, Nonsymmetric ground state of symmetric variational problems, Comm. Pure Appl. Math., 44 (1991), 259-274.doi: 10.1002/cpa.3160440205.

    [19]

    M. Flucher, Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv., 67 (1992), 471-497.doi: 10.1007/BF02566514.

    [20]

    L. Fontana, Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comm. Math. Helv., 68 (1993), 415-454.doi: 10.1007/BF02565828.

    [21]

    F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems. Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes in Mathematics, 1991. Springer-Verlag, Berlin, 2010. xviii+423 pp.doi: 10.1007/978-3-642-12245-3.

    [22]

    B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.doi: 10.1007/BF01221125.

    [23]

    B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $ \mathbbR ^N$, in Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., Academic Press, New York-London, 7a (1981), 369-402.

    [24]

    X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potential, Communications on Pure and Applied Analysis, 10 (2011), 1111-1119.doi: 10.3934/cpaa.2011.10.1111.

    [25]

    X. Han and G. Lu, On regularity of solutions to an integral system associated with Bessel potentials, International Journal of Mathematics, 23 (2012), 1250051 (13 pages).doi: 10.1142/S0129167X12500516.

    [26]

    O. Kavian, Introduction à la Théorie des Points Critiques et Applications Aux Problèmes Elliptiques, Springer-Verlag, Paris, 1993. viii+325 pp.

    [27]

    H. Kozono, T. Sato and H. Wadade, Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality, Indiana Univ. Math. J., 55 (2006), 1951-1974.doi: 10.1512/iumj.2006.55.2743.

    [28]

    N. Lam and G. Lu, Existence and multiplicity of solutions to equations of $n-$Laplacian type with critical exponential growth in $R^n$, J. Funct. Anal., 262 (2012), 1132-1165.doi: 10.1016/j.jfa.2011.10.012.

    [29]

    N. Lam and G. Lu, Existence of nontrivial solutions to Polyharmonic equations with subcritical and critical exponential growth, Discrete Contin. Dyn. Syst., 32 (2012), 2187-2205.doi: 10.3934/dcds.2012.32.2187.

    [30]

    N. Lam and G. Lu, Sharp Adams type inequalities in Sobolev spaces $W^{m,\fracnm}(R^n)$ for arbitrary integer $m$, J. Differential Equations, 253 (2012), 1143-1171.doi: 10.1016/j.jde.2012.04.025.

    [31]

    N. Lam and G. Lu, A new approach to sharp Moser-Trudinger and Adams type inequalities: A rearrangement-free argument, J. Differential Equations, 255 (2013), 298-325.doi: 10.1016/j.jde.2013.04.005.

    [32]

    N. Lam and G. Lu, The Moser-Trudinger and Adams inequalities and elliptic and subelliptic equations with nonlinearity of exponential growth, Recent developments in geometry and analysis, Adv. Lect. Math. (ALM), 23 (2012), 179-251, Int. Press, Somerville, MA.

    [33]

    N. Lam and G. Lu, Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications, Adv. Math., 231 (2012), 3259-3287.doi: 10.1016/j.aim.2012.09.004.

    [34]

    N. Lam, G. Lu and H. Tang, Sharp subcritical Moser-Trudinger inequalities on Heisenberg groups and subelliptic PDEs, Nonlinear Anal., 95 (2014), 77-92.doi: 10.1016/j.na.2013.08.031.

    [35]

    Y. Li, Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differential Equations, 14 (2001), 163-192.

    [36]

    Y. Li, Remarks on the extremal functions for the Moser-Trudinger inequality, Acta Math. Sin. (Engl. Ser.), 22 (2006), 545-550.doi: 10.1007/s10114-005-0568-7.

    [37]

    Y. Li and B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbbR ^n$, Indiana Univ. Math. J., 57 (2008), 451-480.doi: 10.1512/iumj.2008.57.3137.

    [38]

    K. Lin, Extremal functions for Moser's inequality, Trans. Amer. Math. Soc., 348 (1996), 2663-2671.doi: 10.1090/S0002-9947-96-01541-3.

    [39]

    P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1 (1985), 145-201.doi: 10.4171/RMI/6.

    [40]

    P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana, 1 (1985), 45-121.doi: 10.4171/RMI/12.

    [41]

    P. Montecchiari, Multiplicity results for a class of semilinear elliptic equations on $ \mathbbR ^n$, Rend. Sem. Mat. Univ. Padova, 95 (1996), 217-252.

    [42]

    J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.

    [43]

    E. S. Noussair, C. A. Swanson and J. Yang, Quasilinear elliptic problem with critical exponents, Nonlinear Anal. TMA, 20 (1993), 285-301.doi: 10.1016/0362-546X(93)90164-N.

    [44]

    S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, (Russian) Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.

    [45]

    B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbbR ^{2}$, J. Funct. Anal., 219 (2005), 340-367.doi: 10.1016/j.jfa.2004.06.013.

    [46]

    B. Ruf and F. Sani, Sharp Adams-type inequalities in $ \mathbbR ^n$, Trans. Amer. Math. Soc., 365 (2013), 645-670.doi: 10.1090/S0002-9947-2012-05561-9.

    [47]

    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970, xiv+290 pp.

    [48]

    C. Tarsi, Adams' inequality and limiting Sobolev embeddings into Zygmund spaces, Potential Anal., 37 (2012), 353-385.doi: 10.1007/s11118-011-9259-4.

    [49]

    N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.

    [50]

    V. I. Judovič, Some estimates connected with integral operators and with solutions of elliptic equations, (Russian) Dokl. Akad. Nauk SSSR, 138 (1961), 805-808.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return