\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rotating periodic solutions of second order dissipative dynamical systems

Abstract / Introduction Related Papers Cited by
  • This paper is devoted to the following second order dissipative dynamical system \begin{equation*} u''+cu'+ \nabla g(u)+h(u)=e(t) ~\mbox{in}~\mathbb{R}^n. \end{equation*} When $g(u)=g(|u|)$, $\nabla g$ is a coercive function and $h$ is bounded, we use the coincidence degree theory to obtain some existence results of rotating periodic solutions, i.e., $u(t+T)=Qu(t)$, $\forall t\in \mathbb{R}$, with $T>0$ and $Q$ an orthogonal matrix, for $g$ to be nonsingular and singular at zero respectively. Specially, when some strong force type assumption is supposed on $g$, we obtain some new existence results of non-collision solutions for singular systems.
    Mathematics Subject Classification: Primary: 34B15, 34C25; Secondary: 47H11.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Progress in Nonlinear Differential Equations and Their Applications, 10, Birkhäuser, Boston, 1993.doi: 10.1007/978-1-4612-0319-3.

    [2]

    K. C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005.

    [3]

    J. F. Chu, P. J. Torres and M. R. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems, J. Differential Equations, 239 (2007), 196-212.doi: 10.1016/j.jde.2007.05.007.

    [4]

    I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Results in Mathematics and Related Areas, 19, Springer, Berlin, 1990.doi: 10.1007/978-3-642-74331-3.

    [5]

    A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach, J. Differential Equations, 244 (2008), 3235-3264.doi: 10.1016/j.jde.2007.11.005.

    [6]

    A. Fonda and J. A. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force, Discrete Contin. Dyn. Syst., 29 (2011), 169-192.doi: 10.3934/dcds.2011.29.169.

    [7]

    D. Franco and P. J. Torres, Periodic solutions of singular systems without the strong force condition, Proc. Amer. Math. Soc., 136 (2008), 1229-1236.doi: 10.1090/S0002-9939-07-09226-X.

    [8]

    D. Franco and J. R. L. Webb, Collisionless orbits of singular and non singular dynamical systems, Discrete Contin. Dyn. Syst., 15 (2006), 747-757.doi: 10.3934/dcds.2006.15.747.

    [9]

    W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135.doi: 10.1090/S0002-9947-1975-0377983-1.

    [10]

    P. Habets and L. Sanchez, Periodic solutions of dissipative dynamical systems with singular potentials, Differential Integral Equations, 3 (1990), 1139-1149.

    [11]

    Y. M. Long, Index Theory for Symplectic Paths with Applications, Progress in Mathematics, 207, Birkhäuser Verlag, Basel, 2002.doi: 10.1007/978-3-0348-8175-3.

    [12]

    J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conference Series in Mathematics, 40, American Mathematical Society, Providence, RI, 1979.

    [13]

    J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4757-2061-7.

    [14]

    P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65, American Mathematical Society, Providence, RI, 1986.

    [15]

    P. J. Torres, Non-collision periodic solutions of forced dynamical systems with weak singularities, Discrete Contin. Dyn. Syst., 11 (2004), 693-698.doi: 10.3934/dcds.2004.11.693.

    [16]

    P. J. Torres, A. J. Ureña and M. Zamora, Periodic and quasi-periodic motions of a relativistic particle under a central force field, Bull. Lond. Math. Soc., 45 (2013), 140-152.doi: 10.1112/blms/bds076.

    [17]

    J. R. Ward, Periodic solutions of first order systems, Discrete Contin. Dyn. Syst., 33 (2013), 381-389.doi: 10.3934/dcds.2013.33.381.

    [18]

    M. R. Zhang, Periodic solutions of damped differential systems with repulsive singular forces, Proc. Amer. Math. Soc., 127 (1999), 401-407.doi: 10.1090/S0002-9939-99-05120-5.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(162) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return