February  2016, 36(2): 643-652. doi: 10.3934/dcds.2016.36.643

Rotating periodic solutions of second order dissipative dynamical systems

1. 

School of Mathematics and Statistics, & Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, 130024, China

2. 

College of Mathematics, Jilin University, Changchun, 130012, China

Received  June 2014 Published  August 2015

This paper is devoted to the following second order dissipative dynamical system \begin{equation*} u''+cu'+ \nabla g(u)+h(u)=e(t) ~\mbox{in}~\mathbb{R}^n. \end{equation*} When $g(u)=g(|u|)$, $\nabla g$ is a coercive function and $h$ is bounded, we use the coincidence degree theory to obtain some existence results of rotating periodic solutions, i.e., $u(t+T)=Qu(t)$, $\forall t\in \mathbb{R}$, with $T>0$ and $Q$ an orthogonal matrix, for $g$ to be nonsingular and singular at zero respectively. Specially, when some strong force type assumption is supposed on $g$, we obtain some new existence results of non-collision solutions for singular systems.
Citation: Xiaojun Chang, Yong Li. Rotating periodic solutions of second order dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 643-652. doi: 10.3934/dcds.2016.36.643
References:
[1]

A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems,, Progress in Nonlinear Differential Equations and Their Applications, (1993). doi: 10.1007/978-1-4612-0319-3. Google Scholar

[2]

K. C. Chang, Methods in Nonlinear Analysis,, Springer Monographs in Mathematics, (2005). Google Scholar

[3]

J. F. Chu, P. J. Torres and M. R. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems,, J. Differential Equations, 239 (2007), 196. doi: 10.1016/j.jde.2007.05.007. Google Scholar

[4]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics,, Results in Mathematics and Related Areas, (1990). doi: 10.1007/978-3-642-74331-3. Google Scholar

[5]

A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach,, J. Differential Equations, 244 (2008), 3235. doi: 10.1016/j.jde.2007.11.005. Google Scholar

[6]

A. Fonda and J. A. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force,, Discrete Contin. Dyn. Syst., 29 (2011), 169. doi: 10.3934/dcds.2011.29.169. Google Scholar

[7]

D. Franco and P. J. Torres, Periodic solutions of singular systems without the strong force condition,, Proc. Amer. Math. Soc., 136 (2008), 1229. doi: 10.1090/S0002-9939-07-09226-X. Google Scholar

[8]

D. Franco and J. R. L. Webb, Collisionless orbits of singular and non singular dynamical systems,, Discrete Contin. Dyn. Syst., 15 (2006), 747. doi: 10.3934/dcds.2006.15.747. Google Scholar

[9]

W. B. Gordon, Conservative dynamical systems involving strong forces,, Trans. Amer. Math. Soc., 204 (1975), 113. doi: 10.1090/S0002-9947-1975-0377983-1. Google Scholar

[10]

P. Habets and L. Sanchez, Periodic solutions of dissipative dynamical systems with singular potentials,, Differential Integral Equations, 3 (1990), 1139. Google Scholar

[11]

Y. M. Long, Index Theory for Symplectic Paths with Applications,, Progress in Mathematics, (2002). doi: 10.1007/978-3-0348-8175-3. Google Scholar

[12]

J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems,, CBMS Regional Conference Series in Mathematics, (1979). Google Scholar

[13]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Applied Mathematical Sciences, (1989). doi: 10.1007/978-1-4757-2061-7. Google Scholar

[14]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, CBMS Regional Conference Series in Mathematics, (1986). Google Scholar

[15]

P. J. Torres, Non-collision periodic solutions of forced dynamical systems with weak singularities,, Discrete Contin. Dyn. Syst., 11 (2004), 693. doi: 10.3934/dcds.2004.11.693. Google Scholar

[16]

P. J. Torres, A. J. Ureña and M. Zamora, Periodic and quasi-periodic motions of a relativistic particle under a central force field,, Bull. Lond. Math. Soc., 45 (2013), 140. doi: 10.1112/blms/bds076. Google Scholar

[17]

J. R. Ward, Periodic solutions of first order systems,, Discrete Contin. Dyn. Syst., 33 (2013), 381. doi: 10.3934/dcds.2013.33.381. Google Scholar

[18]

M. R. Zhang, Periodic solutions of damped differential systems with repulsive singular forces,, Proc. Amer. Math. Soc., 127 (1999), 401. doi: 10.1090/S0002-9939-99-05120-5. Google Scholar

show all references

References:
[1]

A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems,, Progress in Nonlinear Differential Equations and Their Applications, (1993). doi: 10.1007/978-1-4612-0319-3. Google Scholar

[2]

K. C. Chang, Methods in Nonlinear Analysis,, Springer Monographs in Mathematics, (2005). Google Scholar

[3]

J. F. Chu, P. J. Torres and M. R. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems,, J. Differential Equations, 239 (2007), 196. doi: 10.1016/j.jde.2007.05.007. Google Scholar

[4]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics,, Results in Mathematics and Related Areas, (1990). doi: 10.1007/978-3-642-74331-3. Google Scholar

[5]

A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach,, J. Differential Equations, 244 (2008), 3235. doi: 10.1016/j.jde.2007.11.005. Google Scholar

[6]

A. Fonda and J. A. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force,, Discrete Contin. Dyn. Syst., 29 (2011), 169. doi: 10.3934/dcds.2011.29.169. Google Scholar

[7]

D. Franco and P. J. Torres, Periodic solutions of singular systems without the strong force condition,, Proc. Amer. Math. Soc., 136 (2008), 1229. doi: 10.1090/S0002-9939-07-09226-X. Google Scholar

[8]

D. Franco and J. R. L. Webb, Collisionless orbits of singular and non singular dynamical systems,, Discrete Contin. Dyn. Syst., 15 (2006), 747. doi: 10.3934/dcds.2006.15.747. Google Scholar

[9]

W. B. Gordon, Conservative dynamical systems involving strong forces,, Trans. Amer. Math. Soc., 204 (1975), 113. doi: 10.1090/S0002-9947-1975-0377983-1. Google Scholar

[10]

P. Habets and L. Sanchez, Periodic solutions of dissipative dynamical systems with singular potentials,, Differential Integral Equations, 3 (1990), 1139. Google Scholar

[11]

Y. M. Long, Index Theory for Symplectic Paths with Applications,, Progress in Mathematics, (2002). doi: 10.1007/978-3-0348-8175-3. Google Scholar

[12]

J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems,, CBMS Regional Conference Series in Mathematics, (1979). Google Scholar

[13]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Applied Mathematical Sciences, (1989). doi: 10.1007/978-1-4757-2061-7. Google Scholar

[14]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,, CBMS Regional Conference Series in Mathematics, (1986). Google Scholar

[15]

P. J. Torres, Non-collision periodic solutions of forced dynamical systems with weak singularities,, Discrete Contin. Dyn. Syst., 11 (2004), 693. doi: 10.3934/dcds.2004.11.693. Google Scholar

[16]

P. J. Torres, A. J. Ureña and M. Zamora, Periodic and quasi-periodic motions of a relativistic particle under a central force field,, Bull. Lond. Math. Soc., 45 (2013), 140. doi: 10.1112/blms/bds076. Google Scholar

[17]

J. R. Ward, Periodic solutions of first order systems,, Discrete Contin. Dyn. Syst., 33 (2013), 381. doi: 10.3934/dcds.2013.33.381. Google Scholar

[18]

M. R. Zhang, Periodic solutions of damped differential systems with repulsive singular forces,, Proc. Amer. Math. Soc., 127 (1999), 401. doi: 10.1090/S0002-9939-99-05120-5. Google Scholar

[1]

Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765

[2]

Xiangjin Xu. Multiple solutions of super-quadratic second order dynamical systems. Conference Publications, 2003, 2003 (Special) : 926-934. doi: 10.3934/proc.2003.2003.926

[3]

Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861

[4]

Pablo Amster, Mónica Clapp. Periodic solutions of resonant systems with rapidly rotating nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 373-383. doi: 10.3934/dcds.2011.31.373

[5]

Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803

[6]

Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065

[7]

Xingyong Zhang, Xianhua Tang. Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems. Communications on Pure & Applied Analysis, 2014, 13 (1) : 75-95. doi: 10.3934/cpaa.2014.13.75

[8]

Norimichi Hirano, Zhi-Qiang Wang. Subharmonic solutions for second order Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 467-474. doi: 10.3934/dcds.1998.4.467

[9]

J. R. Ward. Periodic solutions of first order systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 381-389. doi: 10.3934/dcds.2013.33.381

[10]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[11]

Xuelei Wang, Dingbian Qian, Xiying Sun. Periodic solutions of second order equations with asymptotical non-resonance. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4715-4726. doi: 10.3934/dcds.2018207

[12]

Chiara Zanini, Fabio Zanolin. Periodic solutions for a class of second order ODEs with a Nagumo cubic type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4045-4067. doi: 10.3934/dcds.2012.32.4045

[13]

C. Rebelo. Multiple periodic solutions of second order equations with asymmetric nonlinearities. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 25-34. doi: 10.3934/dcds.1997.3.25

[14]

Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529

[15]

Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022

[16]

Zaihong Wang. Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 751-770. doi: 10.3934/dcds.2003.9.751

[17]

Marie-Françoise Bidaut-Véron, Marta García-Huidobro, Cecilia Yarur. Large solutions of elliptic systems of second order and applications to the biharmonic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 411-432. doi: 10.3934/dcds.2012.32.411

[18]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

[19]

Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945

[20]

Wenying Feng, Guang Zhang, Yikang Chai. Existence of positive solutions for second order differential equations arising from chemical reactor theory. Conference Publications, 2007, 2007 (Special) : 373-381. doi: 10.3934/proc.2007.2007.373

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]