# American Institute of Mathematical Sciences

• Previous Article
The Dirichlet problem for Hessian type elliptic equations on Riemannian manifolds
• DCDS Home
• This Issue
• Next Article
Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials
February  2016, 36(2): 683-699. doi: 10.3934/dcds.2016.36.683

## Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity

 1 Department of Mathematics, Huazhong Normal University, Wuhan 430079 2 Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA, United States 3 Department of Mathematics, Huazhong Normal University, Wuhan, 430079

Received  July 2014 Revised  February 2015 Published  August 2015

In this paper, we study the existence of positive solution for the following p-Laplacain type equations with critical nonlinearity \begin{equation*} \left\{ \renewcommand{\arraystretch}{1.25} \begin{array}{ll} -\Delta_p u + V （x)|u|^{p-2}u = K(x)f(u)+P(x)|u|^{p^*-2}u, \quad x\in\mathbb{R}^N,\\ u \in \mathcal{D}^{1,p}(\mathbb{R}^N), \end{array} \right. \end{equation*} where $\Delta_p u = div(|\nabla u|^{p-2} \nabla u),\ 1 < p < N,\ p^* =\frac {Np}{N-p}$, $V(x)$, $K(x)$ are positive continuous functions which vanish at infinity, $f$ is a function with a subcritical growth, and $P(x)$ is a bounded, nonnegative continuous function. By working in the weighted Sobolev spaces, and using variational method, we prove that the given problem has at least one positive solution.
Citation: Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683
##### References:
 [1] C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potentials vanishing at infinitly,, J. Diff. Eqns., 254 (2013), 1977.  doi: 10.1016/j.jde.2012.11.013.  Google Scholar [2] A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinitly,, J. Eur. Math. Soc., 7 (2005), 117.  doi: 10.4171/JEMS/24.  Google Scholar [3] A. Ambrosetti and P. H. Rabinowitz, Dual varitional methods in critical point theory and applications,, J. Funct. Analysis, 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar [4] A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials,, Diff. Integ. Eqns., 18 (2005), 1321.   Google Scholar [5] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar [6] H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Ration. Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar [7] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Commun. Pure. Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar [8] D. Bonheure and J. Van Schaftingen, Ground states for the nonlinear Schrödinger equation with potentials vanishing at infinitly,, Annali Mat. Pura Appl., 189 (2010), 273.  doi: 10.1007/s10231-009-0109-6.  Google Scholar [9] F. Catrina, M. Furtado and M. Montenegro, Positive solutions for nonlinear elliptic equations with fast increasing weights,, Proc. Roy. Soc. Edinb. A, 137 (2007), 1157.  doi: 10.1017/S0308210506000795.  Google Scholar [10] Y. B. Deng, The existence and nodal character of the solutions in $\mathbbR^N$ for semilinear elliptic equation involving critical Sobolev exponent,, Acta Math. Sci., 9 (1989), 385.   Google Scholar [11] Y. B. Deng, L. Y. Jin and S. J. Peng, Solutions of Schrodinger Equations with Inverse Square Potential and Critical Nonlinearity,, J. Diff. Eqns., 253 (2012), 1376.  doi: 10.1016/j.jde.2012.05.009.  Google Scholar [12] Y. B. Deng, Z. H. Guo and G. S. Wang, Nodal solutions for $p-$Laplace equations with critical growth,, Nonlin. Analysis, 54 (2003), 1121.  doi: 10.1016/S0362-546X(03)00129-9.  Google Scholar [13] Y. B. Deng and Y. Li, On the existence of multiple positive solutions for a semilinear problem in exterior domains,, J. Diff. Eqns., 181 (2002), 197.  doi: 10.1006/jdeq.2001.4077.  Google Scholar [14] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of heat equations,, Nonlin Analysis, 11 (1987), 1103.  doi: 10.1016/0362-546X(87)90001-0.  Google Scholar [15] M. F. Furtado, J. P. P. da Silva and M. S. Xavier, Multiplicity of self-similar solutions for a critical equation,, J. Diff. Eqns., 254 (2013), 2732.  doi: 10.1016/j.jde.2013.01.007.  Google Scholar [16] G. B. Li, The existence of a weak solution of quasilinear elliptic equation with critical Sobolev exponent on unbounded domain,, Acta Math. Sci., 14 (1994), 64.   Google Scholar [17] P. L. Lions, The concentration-compactness principle in calculus of variations, The limit case Part I,, Rev. Mat. Iber., 1 (1985), 145.  doi: 10.4171/RMI/6.  Google Scholar [18] P. L. Lions, The concentration-compactness principle in calculus of variations, The limit case Part II,, Rev. Mat. Iber., 1 (1985), 45.  doi: 10.4171/RMI/12.  Google Scholar [19] B. Opic and A. Kufner, Hardy-Type Inequalities,, Pitman Research Notes in Mathematics Series, (1990).   Google Scholar [20] J. Serrin, Local behavior of solutions of quasilinear equations,, Acta. Math., 111 (1964), 247.  doi: 10.1007/BF02391014.  Google Scholar [21] D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities,, Trans. Amer. Math. Soc., 357 (2005), 2909.  doi: 10.1090/S0002-9947-04-03769-9.  Google Scholar [22] W. A. Strauss, Existence of solitary in higher dimensions,, Commun. Math. Phys., 55 (1977), 149.  doi: 10.1007/BF01626517.  Google Scholar [23] C. A. Swanson and L. S. Yu., Critical p-laplacian problems in $\mathbbR^N$,, Annali Mat. Pura Appl., 169 (1995), 233.  doi: 10.1007/BF01759355.  Google Scholar [24] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Diff. Eqns., 51 (1984), 126.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar [25] M. Willem, Minimax Theorems,, Progress in Nonlinear Differential Equations and Their Applications, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar [26] X. P. Zhu, Nontrivial solution of quasilinear elliptic equation involving critical Sobolev exponent,, Sci. Sinica., 31 (1990), 1161.   Google Scholar

show all references

##### References:
 [1] C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potentials vanishing at infinitly,, J. Diff. Eqns., 254 (2013), 1977.  doi: 10.1016/j.jde.2012.11.013.  Google Scholar [2] A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinitly,, J. Eur. Math. Soc., 7 (2005), 117.  doi: 10.4171/JEMS/24.  Google Scholar [3] A. Ambrosetti and P. H. Rabinowitz, Dual varitional methods in critical point theory and applications,, J. Funct. Analysis, 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar [4] A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials,, Diff. Integ. Eqns., 18 (2005), 1321.   Google Scholar [5] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar [6] H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Ration. Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar [7] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Commun. Pure. Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar [8] D. Bonheure and J. Van Schaftingen, Ground states for the nonlinear Schrödinger equation with potentials vanishing at infinitly,, Annali Mat. Pura Appl., 189 (2010), 273.  doi: 10.1007/s10231-009-0109-6.  Google Scholar [9] F. Catrina, M. Furtado and M. Montenegro, Positive solutions for nonlinear elliptic equations with fast increasing weights,, Proc. Roy. Soc. Edinb. A, 137 (2007), 1157.  doi: 10.1017/S0308210506000795.  Google Scholar [10] Y. B. Deng, The existence and nodal character of the solutions in $\mathbbR^N$ for semilinear elliptic equation involving critical Sobolev exponent,, Acta Math. Sci., 9 (1989), 385.   Google Scholar [11] Y. B. Deng, L. Y. Jin and S. J. Peng, Solutions of Schrodinger Equations with Inverse Square Potential and Critical Nonlinearity,, J. Diff. Eqns., 253 (2012), 1376.  doi: 10.1016/j.jde.2012.05.009.  Google Scholar [12] Y. B. Deng, Z. H. Guo and G. S. Wang, Nodal solutions for $p-$Laplace equations with critical growth,, Nonlin. Analysis, 54 (2003), 1121.  doi: 10.1016/S0362-546X(03)00129-9.  Google Scholar [13] Y. B. Deng and Y. Li, On the existence of multiple positive solutions for a semilinear problem in exterior domains,, J. Diff. Eqns., 181 (2002), 197.  doi: 10.1006/jdeq.2001.4077.  Google Scholar [14] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of heat equations,, Nonlin Analysis, 11 (1987), 1103.  doi: 10.1016/0362-546X(87)90001-0.  Google Scholar [15] M. F. Furtado, J. P. P. da Silva and M. S. Xavier, Multiplicity of self-similar solutions for a critical equation,, J. Diff. Eqns., 254 (2013), 2732.  doi: 10.1016/j.jde.2013.01.007.  Google Scholar [16] G. B. Li, The existence of a weak solution of quasilinear elliptic equation with critical Sobolev exponent on unbounded domain,, Acta Math. Sci., 14 (1994), 64.   Google Scholar [17] P. L. Lions, The concentration-compactness principle in calculus of variations, The limit case Part I,, Rev. Mat. Iber., 1 (1985), 145.  doi: 10.4171/RMI/6.  Google Scholar [18] P. L. Lions, The concentration-compactness principle in calculus of variations, The limit case Part II,, Rev. Mat. Iber., 1 (1985), 45.  doi: 10.4171/RMI/12.  Google Scholar [19] B. Opic and A. Kufner, Hardy-Type Inequalities,, Pitman Research Notes in Mathematics Series, (1990).   Google Scholar [20] J. Serrin, Local behavior of solutions of quasilinear equations,, Acta. Math., 111 (1964), 247.  doi: 10.1007/BF02391014.  Google Scholar [21] D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities,, Trans. Amer. Math. Soc., 357 (2005), 2909.  doi: 10.1090/S0002-9947-04-03769-9.  Google Scholar [22] W. A. Strauss, Existence of solitary in higher dimensions,, Commun. Math. Phys., 55 (1977), 149.  doi: 10.1007/BF01626517.  Google Scholar [23] C. A. Swanson and L. S. Yu., Critical p-laplacian problems in $\mathbbR^N$,, Annali Mat. Pura Appl., 169 (1995), 233.  doi: 10.1007/BF01759355.  Google Scholar [24] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Diff. Eqns., 51 (1984), 126.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar [25] M. Willem, Minimax Theorems,, Progress in Nonlinear Differential Equations and Their Applications, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar [26] X. P. Zhu, Nontrivial solution of quasilinear elliptic equation involving critical Sobolev exponent,, Sci. Sinica., 31 (1990), 1161.   Google Scholar
 [1] Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273 [2] M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215 [3] Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007 [4] P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure & Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691 [5] Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079 [6] Jiguang Bao, Nguyen Lam, Guozhen Lu. Polyharmonic equations with critical exponential growth in the whole space $\mathbb{R}^{n}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 577-600. doi: 10.3934/dcds.2016.36.577 [7] Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231 [8] Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124 [9] M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703 [10] Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126 [11] Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 19-25. [12] Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008 [13] Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková. Sharp Sobolev type embeddings on the entire Euclidean space. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2011-2037. doi: 10.3934/cpaa.2018096 [14] Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365 [15] Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021 [16] Yaping Wu, Xiuxia Xing. Stability of traveling waves with critical speeds for $P$-degree Fisher-type equations. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1123-1139. doi: 10.3934/dcds.2008.20.1123 [17] Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885 [18] Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164 [19] Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041 [20] Xiaomei Sun, Yimin Zhang. Elliptic equations with cylindrical potential and multiple critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1943-1957. doi: 10.3934/cpaa.2013.12.1943

2018 Impact Factor: 1.143

## Metrics

• PDF downloads (51)
• HTML views (0)
• Cited by (0)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]