• Previous Article
    Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment
  • DCDS Home
  • This Issue
  • Next Article
    Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations
2016, 36(2): 971-980. doi: 10.3934/dcds.2016.36.971

Topological degree method for the rotationally symmetric $L_p$-Minkowski problem

1. 

Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China

2. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084

Received  October 2014 Revised  February 2015 Published  August 2015

Consider the existence of rotationally symmetric solutions to the $L_p$-Minkowski problem for $p=-n-1$. Recently a sufficient condition was obtained for the existence via the variational method and a blow-up analysis in [16]. In this paper we use a topological degree method to prove the same existence and show the result holds under a similar complementary sufficient condition. Moreover, by this degree method, we obtain the existence result in a perturbation case.
Citation: Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971
References:
[1]

J. Ai, K.-S. Chou and J.-C. Wei, Self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var. Partial Differential Equations, 13 (2001), 311. doi: 10.1007/s005260000075.

[2]

L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing,, Arch. Rational Mech. Anal., 123 (1993), 199. doi: 10.1007/BF00375127.

[3]

B. Andrews, Evolving convex curves,, Calc. Var. Partial Differential Equations, 7 (1998), 315. doi: 10.1007/s005260050111.

[4]

J. Böröczky, E. Lutwak, D. Yang and G. Zhang, The logarithmic Minkowski problem,, J. Amer. Math. Soc., 26 (2013), 831. doi: 10.1090/S0894-0347-2012-00741-3.

[5]

E. Calabi, Complete affine hyperspheres. I,, in Symposia Mathematica, (1972), 19.

[6]

S.-Y. A. Chang, M. J. Gursky and P. C. Yang, The scalar curvature equation on $2$- and $3$-spheres,, Calc. Var. Partial Differential Equations, 1 (1993), 205. doi: 10.1007/BF01191617.

[7]

W.-X. Chen, $L_p$ Minkowski problem with not necessarily positive data,, Adv. Math., 201 (2006), 77. doi: 10.1016/j.aim.2004.11.007.

[8]

W.-X. Chen and C.-M. Li, A necessary and sufficient condition for the Nirenberg problem,, Comm. Pure Appl. Math., 48 (1995), 657. doi: 10.1002/cpa.3160480606.

[9]

K.-S. Chou and X.-J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry,, Adv. Math., 205 (2006), 33. doi: 10.1016/j.aim.2005.07.004.

[10]

K.-S. Chou and X.-P. Zhu, The Curve Shortening Problem,, Chapman & Hall/CRC, (2001). doi: 10.1201/9781420035704.

[11]

J.-B. Dou and M.-J. Zhu, The two dimensional $L_p$ Minkowski problem and nonlinear equations with negative exponents,, Adv. Math., 230 (2012), 1209. doi: 10.1016/j.aim.2012.02.027.

[12]

M. Ji, On positive scalar curvature on $S^2$,, Calc. Var. Partial Differential Equations, 19 (2004), 165. doi: 10.1007/s00526-003-0214-0.

[13]

H.-Y. Jian and X.-J. Wang, Bernsterin theorem and regularity for a class of Monge Ampère equations,, J. Diff. Geom., 93 (2013), 431.

[14]

M.-Y. Jiang, L.-P. Wang and J.-C. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var. Partial Differential Equations, 41 (2011), 535. doi: 10.1007/s00526-010-0375-6.

[15]

Y.-Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I,, J. Differential Equations, 120 (1995), 319. doi: 10.1006/jdeq.1995.1115.

[16]

J. Lu and X.-J. Wang, Rotationally symmetric solutions to the $L_p$-Minkowski problem,, J. Differential Equations, 254 (2013), 983. doi: 10.1016/j.jde.2012.10.008.

[17]

E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem,, J. Differential Geom., 38 (1993), 131.

[18]

E. Lutwak, D. Yang and G. Zhang, On the $L_p$-Minkowski problem,, Trans. Amer. Math. Soc., 356 (2004), 4359. doi: 10.1090/S0002-9947-03-03403-2.

[19]

E. Lutwak and G. Zhang, Blaschke-Santaló inequalities,, J. Diff. Geom., 47 (1997), 1.

[20]

R. Schoen and D. Zhang, Prescribed scalar curvature on the $n$-sphere,, Calc. Var. Partial Differential Equations, 4 (1996), 1. doi: 10.1007/BF01322307.

[21]

G. Szego, Orthogonal Polynomials,, American Mathematical Society, (1975).

[22]

V. Umanskiy, On solvability of two-dimensional $L_p$-Minkowski problem,, Adv. Math., 180 (2003), 176. doi: 10.1016/S0001-8708(02)00101-9.

[23]

G. Zhu, The logarithmic Minkowski problem for polytopes,, Adv. Math., 262 (2014), 909. doi: 10.1016/j.aim.2014.06.004.

[24]

G. Zhu, The centro-affine Minkowski problem for polytopes,, J. Differential Geom., 101 (2015), 159.

show all references

References:
[1]

J. Ai, K.-S. Chou and J.-C. Wei, Self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var. Partial Differential Equations, 13 (2001), 311. doi: 10.1007/s005260000075.

[2]

L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing,, Arch. Rational Mech. Anal., 123 (1993), 199. doi: 10.1007/BF00375127.

[3]

B. Andrews, Evolving convex curves,, Calc. Var. Partial Differential Equations, 7 (1998), 315. doi: 10.1007/s005260050111.

[4]

J. Böröczky, E. Lutwak, D. Yang and G. Zhang, The logarithmic Minkowski problem,, J. Amer. Math. Soc., 26 (2013), 831. doi: 10.1090/S0894-0347-2012-00741-3.

[5]

E. Calabi, Complete affine hyperspheres. I,, in Symposia Mathematica, (1972), 19.

[6]

S.-Y. A. Chang, M. J. Gursky and P. C. Yang, The scalar curvature equation on $2$- and $3$-spheres,, Calc. Var. Partial Differential Equations, 1 (1993), 205. doi: 10.1007/BF01191617.

[7]

W.-X. Chen, $L_p$ Minkowski problem with not necessarily positive data,, Adv. Math., 201 (2006), 77. doi: 10.1016/j.aim.2004.11.007.

[8]

W.-X. Chen and C.-M. Li, A necessary and sufficient condition for the Nirenberg problem,, Comm. Pure Appl. Math., 48 (1995), 657. doi: 10.1002/cpa.3160480606.

[9]

K.-S. Chou and X.-J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry,, Adv. Math., 205 (2006), 33. doi: 10.1016/j.aim.2005.07.004.

[10]

K.-S. Chou and X.-P. Zhu, The Curve Shortening Problem,, Chapman & Hall/CRC, (2001). doi: 10.1201/9781420035704.

[11]

J.-B. Dou and M.-J. Zhu, The two dimensional $L_p$ Minkowski problem and nonlinear equations with negative exponents,, Adv. Math., 230 (2012), 1209. doi: 10.1016/j.aim.2012.02.027.

[12]

M. Ji, On positive scalar curvature on $S^2$,, Calc. Var. Partial Differential Equations, 19 (2004), 165. doi: 10.1007/s00526-003-0214-0.

[13]

H.-Y. Jian and X.-J. Wang, Bernsterin theorem and regularity for a class of Monge Ampère equations,, J. Diff. Geom., 93 (2013), 431.

[14]

M.-Y. Jiang, L.-P. Wang and J.-C. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var. Partial Differential Equations, 41 (2011), 535. doi: 10.1007/s00526-010-0375-6.

[15]

Y.-Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I,, J. Differential Equations, 120 (1995), 319. doi: 10.1006/jdeq.1995.1115.

[16]

J. Lu and X.-J. Wang, Rotationally symmetric solutions to the $L_p$-Minkowski problem,, J. Differential Equations, 254 (2013), 983. doi: 10.1016/j.jde.2012.10.008.

[17]

E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem,, J. Differential Geom., 38 (1993), 131.

[18]

E. Lutwak, D. Yang and G. Zhang, On the $L_p$-Minkowski problem,, Trans. Amer. Math. Soc., 356 (2004), 4359. doi: 10.1090/S0002-9947-03-03403-2.

[19]

E. Lutwak and G. Zhang, Blaschke-Santaló inequalities,, J. Diff. Geom., 47 (1997), 1.

[20]

R. Schoen and D. Zhang, Prescribed scalar curvature on the $n$-sphere,, Calc. Var. Partial Differential Equations, 4 (1996), 1. doi: 10.1007/BF01322307.

[21]

G. Szego, Orthogonal Polynomials,, American Mathematical Society, (1975).

[22]

V. Umanskiy, On solvability of two-dimensional $L_p$-Minkowski problem,, Adv. Math., 180 (2003), 176. doi: 10.1016/S0001-8708(02)00101-9.

[23]

G. Zhu, The logarithmic Minkowski problem for polytopes,, Adv. Math., 262 (2014), 909. doi: 10.1016/j.aim.2014.06.004.

[24]

G. Zhu, The centro-affine Minkowski problem for polytopes,, J. Differential Geom., 101 (2015), 159.

[1]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[2]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[3]

Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069

[4]

Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705

[5]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[6]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[7]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[8]

Diego Maldonado. On interior \begin{document} $C^2$ \end{document}-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[9]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[10]

Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121

[11]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[12]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[13]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

[14]

Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061

[15]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[16]

Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963

[17]

Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765

[18]

Jérôme Bertrand. Prescription of Gauss curvature on compact hyperbolic orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1269-1284. doi: 10.3934/dcds.2014.34.1269

[19]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[20]

Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]