\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The $C$-regularized semigroup method for partial differential equations with delays

Abstract / Introduction Related Papers Cited by
  • This paper is devoted to study the abstract functional differential equation (FDE) of the following form $$\dot{u}(t)=Au(t)+\Phi u_t,$$ where $A$ generates a $C$-regularized semigroup, which is the generalization of $C_0$-semigroup and can be applied to deal with many important differential operators that the $C_0$-semigroup can not be used to. We first show that the $C$-well-posedness of a FDE is equivalent to the $\mathscr{C}$-well-posedness of an abstract Cauchy problem in a product Banach space, where the operator $\mathscr{C}$ is related with the operator $C$ and will be defined in the following text. Then, by making use of a perturbation result of $C$-regularized semigroup, a sufficient condition is provided for the $C$-well-posedness of FDEs. Moreover, an illustrative application to partial differential equation (PDE) with delay is given in the last section.
    Mathematics Subject Classification: Primary: 47D60, 47D06; Secondary: 35R10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math., 59 (1987), 327-352.doi: 10.1007/BF02774144.

    [2]

    A. Bátkai and S. Piazzera, Semigroups and linear differential equations with delay, J. Math. Anal. Appl., 264 (2001), 1-20.doi: 10.1006/jmaa.2001.6705.

    [3]

    A. Bátkai and S. Piazzera, Semigroups for Delay Equations, A. K. Peters, Wellesley, 2005.

    [4]

    P. N. Chen and H. S. Qin, Controllability of linear systems in Banach spaces, Syst. Control Lett., 45 (2002), 155-161.doi: 10.1016/S0167-6911(01)00177-3.

    [5]

    E. B. Davies and M. M. H. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc., 55 (1987), 181-208.doi: 10.1112/plms/s3-55.1.181.

    [6]

    R. deLaubenfels and E. Families, Functional Calculi and Evolution Equations, Springer-Verlag, 1994.

    [7]

    R. deLaubenfels, Matrices of operators and regularized semigroups, Math. Z., 212 (1993), 619-629.doi: 10.1007/BF02571680.

    [8]

    R. deLaubenfels, $C$-semigroups and the Cauchy problem, J. Funct. Anal., 111 (1993), 44-61.doi: 10.1006/jfan.1993.1003.

    [9]

    K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.

    [10]

    B. Z. Guo, J. M. Wang and S. P. Yung, On the $C_0$-semigroup generation and exponential stability resulting from a shear force feedback on a rotating beam, Syst. Control Lett., 54 (2005), 557-574.doi: 10.1016/j.sysconle.2004.10.006.

    [11]

    J. K. Hale, Functional Differential Equations, Appl. Math. Sci., Vol. 3, Springer-Verlag, 1971.

    [12]

    M. Hieber, Laplace transforms and $\alpha$-times integrated semigroups, Forum Math., 3 (1991), 595-612.doi: 10.1515/form.1991.3.595.

    [13]

    M. Hieber, Integrated semigroups and differential operators on $L^p$ spaces, Math. Ann., 291 (1991), 1-16.doi: 10.1007/BF01445187.

    [14]

    L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces, Acta Math., 104 (1960), 93-140.doi: 10.1007/BF02547187.

    [15]

    F. T. Iha and C. F. Schubert, The spectrum of partial differential operators on $L^p(R^n)$, Trans. Amer. Math. Soc., 152 (1970), 215-226.

    [16]

    C. Kaiser, Integrated semigroups and linear partial differential equations with delay, J. Math. Anal. Appl., 292 (2004), 328-339.doi: 10.1016/j.jmaa.2003.10.031.

    [17]

    H. Kellermann and M. Hieber, Integrated semigroups, J. Funct. Anal., 84 (1989), 160-180.doi: 10.1016/0022-1236(89)90116-X.

    [18]

    C. C. Kuo, On perturbation of $\alpha$-times integrated $C$-semigroups, Taiwanese J. Math., 14 (2010), 1979-1992.

    [19]

    Y. S. Lei and Q. Zheng, The application of $C$-semigroups to differential operators in $L^p(R^n)$, J. Math. Anal. Appl., 188 (1994), 809-818.doi: 10.1006/jmaa.1994.1464.

    [20]

    Y. S. Lei, W. H. Yi and Q. Zheng, Semigroups of operators and polynomials of generators of bounded strongly continuous groups, Proc. London Math. Soc., 69 (1994), 144-170.doi: 10.1112/plms/s3-69.1.144.

    [21]

    Y. S. Lei and Q. Zheng, Exponentially bounded $C$-semigroups and integrated semigroups with nondensely defined generators II: Perturbation (in Chinese), Acta Math. Sci., 13 (1993), 428-434.

    [22]

    K. S. Liu and Z. Y. Liu, Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping, SIAM J. Control Optim., 36 (1998), 1086-1098.doi: 10.1137/S0363012996310703.

    [23]

    I. V. Mel'nikova and A. Filinkov, Abstract Cauchy Problems: Three Approaches, Chapman & Hall, London, 2001.doi: 10.1201/9781420035490.

    [24]

    I. V. Mel'nikova and A. Filinkov, Integrated semigroups and $C$-semigroups, well-posedness and regularization of differential-operator problems, Russian Math. Surveys, 49 (1994), 115-155.doi: 10.1070/RM1994v049n06ABEH002449.

    [25]

    F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pac. J. Math., 135 (1988), 111-155.doi: 10.2140/pjm.1988.135.111.

    [26]

    M. Schechter, Spectra of Partial Differential Operators, $2^{nd}$, North Holland, Elsevier, 1986.

    [27]

    X. L. Song and J. G. Peng, Lipschitzian semigroups and abstract functional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 72 (2010), 2346-2355.doi: 10.1016/j.na.2009.10.035.

    [28]

    N. Tanaka, On perturbation theory for exponentially bounded $C$-semigroups, Semigroup Forum, 41 (1990), 215-236.doi: 10.1007/BF02573392.

    [29]

    N. Tanaka and I. Miyadera, Exponential bounded $C$-semigroups and intgrated semigroups, Tokyo, J. Math., 12 (1989), 99-115.doi: 10.3836/tjm/1270133551.

    [30]

    G. S. Wang and L. J. Wang, The Bang-Bang principle of time optimal controls for the heat equation with internal controls. Syst. Control Lett., 56 (2007), 709-713.doi: 10.1016/j.sysconle.2007.06.001.

    [31]

    G. Webb, Functional differential equations and nonlinear semigroups in $L^p$-spaces, J. Diff. Eq., 20 (1976), 71-89.doi: 10.1016/0022-0396(76)90097-8.

    [32]

    G. Weiss, Optimal control of systems with a unitary semigroup and with colocated control and observation, Syst. Control Lett., 48 (2003), 329-340.doi: 10.1016/S0167-6911(02)00276-1.

    [33]

    J. Wu, Theory and Application of Partial Functional Differential Equations, Appl. Math. Sci., Vol. 119, Springer-Verlag, New York, 1996.doi: 10.1007/978-1-4612-4050-1.

    [34]

    Q. Zheng and M. Li, Regularized Semigroups and Non-Elliptic Differential Operators, Sciense Press, Beijing, 2014.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return