2016, 36(10): 5231-5244. doi: 10.3934/dcds.2016028

Positive solutions to indefinite Neumann problems when the weight has positive average

1. 

Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, I-10123 Torino, Italy

2. 

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Via Cozzi 55, I-20125 Milano, Italy

Received  October 2015 Revised  April 2016 Published  July 2016

We deal with positive solutions for the Neumann boundary value problem associated with the scalar second order ODE $$ u'' + q(t)g(u) = 0, \quad t \in [0, T], $$ where $g: [0, +\infty[\, \to \mathbb{R}$ is positive on $\,]0, +\infty[\,$ and $q(t)$ is an indefinite weight. Complementary to previous investigations in the case $\int_0^T q(t) < 0$, we provide existence results for a suitable class of weights having (small) positive mean, when $g'(u) < 0$ at infinity. Our proof relies on a shooting argument for a suitable equivalent planar system of the type $$ x' = y, \qquad y' = h(x)y^2 + q(t), $$ with $h(x)$ a continuous function defined on the whole real line.
Citation: Alberto Boscaggin, Maurizio Garrione. Positive solutions to indefinite Neumann problems when the weight has positive average. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5231-5244. doi: 10.3934/dcds.2016028
References:
[1]

S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities,, Calc. Var. Partial Differential Equations, 1 (1993), 439. doi: 10.1007/BF01206962.

[2]

H. Amann, On the number of solutions of nonlinear equations in ordered Banach spaces,, J. Functional Analysis, 11 (1972), 346. doi: 10.1016/0022-1236(72)90074-2.

[3]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Differential Equations, 146 (1998), 336. doi: 10.1006/jdeq.1998.3440.

[4]

F. V. Atkinson, W. N. Everitt and K. S. Ong, On the $m$-coefficient of Weyl for a differential equation with an indefinite weight function,, Proc. London Math. Soc. (3), 29 (1974), 368.

[5]

C. Bandle, M. A. Pozio and A. Tesei, Existence and uniqueness of solutions of nonlinear Neumann problems,, Math. Z., 199 (1988), 257. doi: 10.1007/BF01159655.

[6]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Topol. Methods Nonlinear Anal., 4 (1994), 59.

[7]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems,, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 553. doi: 10.1007/BF01210623.

[8]

A. Boscaggin, G. Feltrin and F. Zanolin, Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: A topological degree approach for the super-sublinear case,, Proc. Roy. Soc. Edinburgh Sect. A., 146 (2016), 449. doi: 10.1017/S0308210515000621.

[9]

A. Boscaggin and M. Garrione, Multiple solutions to Neumann problems with indefinite weight and bounded nonlinearities,, J. Dynam. Differential Equations, 28 (2016), 167. doi: 10.1007/s10884-015-9430-5.

[10]

A. Boscaggin and F. Zanolin, Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight,, J. Differential Equations, 252 (2012), 2900. doi: 10.1016/j.jde.2011.09.011.

[11]

A. Boscaggin and F. Zanolin, Second order ordinary differential equations with indefinite weight: the Neumann boundary value problem,, Ann. Mat. Pura Appl. (4), 194 (2015), 451. doi: 10.1007/s10231-013-0384-0.

[12]

G. Feltrin and F. Zanolin, Existence of positive solutions in the superlinear case via coincidence degree: the Neumann and the periodic boundary value problems,, Adv. Differential Equations, 20 (2015), 937.

[13]

P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function,, Comm. Partial Differential Equations, 5 (1980), 999. doi: 10.1080/03605308008820162.

[14]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Applied Mathematical Sciences, 74 (1989). doi: 10.1007/978-1-4757-2061-7.

[15]

P. H. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential equations,, Indiana Univ. Math. J., 23 (): 173. doi: 10.1512/iumj.1974.23.23014.

show all references

References:
[1]

S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities,, Calc. Var. Partial Differential Equations, 1 (1993), 439. doi: 10.1007/BF01206962.

[2]

H. Amann, On the number of solutions of nonlinear equations in ordered Banach spaces,, J. Functional Analysis, 11 (1972), 346. doi: 10.1016/0022-1236(72)90074-2.

[3]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Differential Equations, 146 (1998), 336. doi: 10.1006/jdeq.1998.3440.

[4]

F. V. Atkinson, W. N. Everitt and K. S. Ong, On the $m$-coefficient of Weyl for a differential equation with an indefinite weight function,, Proc. London Math. Soc. (3), 29 (1974), 368.

[5]

C. Bandle, M. A. Pozio and A. Tesei, Existence and uniqueness of solutions of nonlinear Neumann problems,, Math. Z., 199 (1988), 257. doi: 10.1007/BF01159655.

[6]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Topol. Methods Nonlinear Anal., 4 (1994), 59.

[7]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems,, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 553. doi: 10.1007/BF01210623.

[8]

A. Boscaggin, G. Feltrin and F. Zanolin, Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: A topological degree approach for the super-sublinear case,, Proc. Roy. Soc. Edinburgh Sect. A., 146 (2016), 449. doi: 10.1017/S0308210515000621.

[9]

A. Boscaggin and M. Garrione, Multiple solutions to Neumann problems with indefinite weight and bounded nonlinearities,, J. Dynam. Differential Equations, 28 (2016), 167. doi: 10.1007/s10884-015-9430-5.

[10]

A. Boscaggin and F. Zanolin, Pairs of positive periodic solutions of second order nonlinear equations with indefinite weight,, J. Differential Equations, 252 (2012), 2900. doi: 10.1016/j.jde.2011.09.011.

[11]

A. Boscaggin and F. Zanolin, Second order ordinary differential equations with indefinite weight: the Neumann boundary value problem,, Ann. Mat. Pura Appl. (4), 194 (2015), 451. doi: 10.1007/s10231-013-0384-0.

[12]

G. Feltrin and F. Zanolin, Existence of positive solutions in the superlinear case via coincidence degree: the Neumann and the periodic boundary value problems,, Adv. Differential Equations, 20 (2015), 937.

[13]

P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function,, Comm. Partial Differential Equations, 5 (1980), 999. doi: 10.1080/03605308008820162.

[14]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Applied Mathematical Sciences, 74 (1989). doi: 10.1007/978-1-4757-2061-7.

[15]

P. H. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential equations,, Indiana Univ. Math. J., 23 (): 173. doi: 10.1512/iumj.1974.23.23014.

[1]

Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315

[2]

Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436

[3]

Vladimir Lubyshev. Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem. Communications on Pure & Applied Analysis, 2009, 8 (3) : 999-1018. doi: 10.3934/cpaa.2009.8.999

[4]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[5]

Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014

[6]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[7]

Alexandre Rocha, Mário Jorge Dias Carneiro. A dynamical condition for differentiability of Mather's average action. Journal of Geometric Mechanics, 2014, 6 (4) : 549-566. doi: 10.3934/jgm.2014.6.549

[8]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann problems with indefinite potential and concave terms. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2561-2616. doi: 10.3934/cpaa.2015.14.2561

[9]

Leszek Gasiński, Nikolaos S. Papageorgiou. Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1985-1999. doi: 10.3934/cpaa.2013.12.1985

[10]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight . Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[11]

Wenxian Shen, Xiaoxia Xie. Spectraltheory for nonlocal dispersal operators with time periodic indefinite weight functions and applications. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1023-1047. doi: 10.3934/dcdsb.2017051

[12]

Chao Wang, Dingbian Qian, Qihuai Liu. Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2305-2328. doi: 10.3934/dcds.2016.36.2305

[13]

Virginie Bonnaillie-Noël. Harmonic oscillators with Neumann condition on the half-line. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2221-2237. doi: 10.3934/cpaa.2012.11.2221

[14]

Xin Yang Lu. Regularity of densities in relaxed and penalized average distance problem. Networks & Heterogeneous Media, 2015, 10 (4) : 837-855. doi: 10.3934/nhm.2015.10.837

[15]

Mustapha Ait Rami, John Moore. Partial stabilizability and hidden convexity of indefinite LQ problem. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 221-239. doi: 10.3934/naco.2016009

[16]

Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845

[17]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[18]

Kimie Nakashima, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 617-641. doi: 10.3934/dcds.2010.27.617

[19]

Yuan Lou, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 643-655. doi: 10.3934/dcds.2010.27.643

[20]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2589-2618. doi: 10.3934/dcds.2017111

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]