-
Previous Article
Euler-Poincaré-Arnold equations on semi-direct products II
- DCDS Home
- This Issue
-
Next Article
Differential geometry of rigid bodies collisions and non-standard billiards
Second-order variational problems on Lie groupoids and optimal control applications
1. | Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109 |
2. | Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Calle Nicolás Cabrera 15, Campus UAM, Cantoblanco, Madrid, 28049, Spain |
References:
[1] |
L. Abrunheiro and M. Camarinha, Optimal control of affine connection control systems, from the point of view of lie algebroids,, Int. J. Geom. Methods Mod. Phys., (2014).
doi: 10.1142/S0219887814500388. |
[2] |
R. Benito, de León M and D. Martín de Diego, Higher-order discrete lagrangian mechanics,, Int. Journal of Geometric Methods in Modern Physics, 3 (2006), 421.
doi: 10.1142/S0219887806001235. |
[3] |
A. M. Bloch, Nonholonomic Mechanics and Control,, Interdisciplinary Applied Mathematics Series, 24 (2003).
doi: 10.1007/b97376. |
[4] |
A. M. Bloch, L. Colombo, R. Gupta and D. Martín de Diego, A geometric approach to the optimal control of nonholonomic mechanical systems,, Analysis and geometry in control theory and its applications, (2015).
doi: 10.1007/978-3-319-06917-3_2. |
[5] |
A. M. Bloch and P. E. Crouch, On the equivalence of higher order variational problems and optimal control problems,, Proceedings of 35rd IEEE Conference on Decision and Control, (1996), 1648.
doi: 10.1109/CDC.1996.572780. |
[6] |
A. M. Bloch, I. I. Hussein, M. Leok and A. K. Sanyal, Geometric structure-preserving optimal control of the rigid body,, Journal of Dynamical and Control Systems, 15 (2009), 307.
doi: 10.1007/s10883-009-9071-2. |
[7] |
AI. Bobenko and YB. Suris, Discrete Lagrangian reduction, discrete Euler-Poincaré equations and semidirect products,, Lett. Math. Phys., 49 (1999).
doi: 10.1023/A:1007654605901. |
[8] |
N. Bou-Rabee and J. E. Marsden, Hamilton-Pontryagin integrators on Lie groups,, Foundations of Computational Mathematics, 9 (2009), 197.
doi: 10.1007/s10208-008-9030-4. |
[9] |
A. J. Bruce, K. Grabowska and J. Grabowski, Higher order mechanics on graded bundles,, J. Phys. A, 48 (2015).
doi: 10.1088/1751-8113/48/20/205203. |
[10] |
A. J. Bruce, K. Grabowska, J. Grabowski and P. Urbanski, New Developments In Geometric Mechanics,, To appear in Banach Center Publications. Preprint available at , (2015). |
[11] |
F. Bullo and A. Lewis, Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems,, Texts in Applied Mathematics, (2005).
doi: 10.1007/978-1-4899-7276-7. |
[12] |
C. Burnett, D. Holm and D. Meier, Geometric integrators for higher-order mechanics on Lie groups,, Proc. R. Soc. A., 469 (2013).
doi: 10.1098/rspa.2013.0249. |
[13] |
J. A. Cadzow, Discrete Calculus of Variations,, Int. J. Control, 11 (1970), 393.
doi: 10.1080/00207177008905922. |
[14] |
M. Camarinha, P. Crouch and F. Silva-Leite, Splines of class $C^k$ on non-Euclidean spaces,, IMA J. Math. Control Info., 12 (1995), 399.
doi: 10.1093/imamci/12.4.399. |
[15] |
D. Chang and J. Marsden, Asymptotic stabilization of the heavy top using controlled Lagrangians,, Proceedings of the 39th IEEE Conference on Decision and Control, (2000), 269.
doi: 10.1109/CDC.2000.912771. |
[16] |
L. Colombo, Geometric and Numerical Methods For Optimal Control of Mechanical Systems,, Ph.D Thesis, (2014). |
[17] |
L. Colombo, S. Ferraro and D. Martín de Diego, Geometric integrators for higher-order variational systems and their application to optimal control,, Preprint, (2014).
doi: 10.1007/s00332-016-9314-9. |
[18] |
L. Colombo and D. Martín de Diego, Second-order constrained variational problems on Lie algebroids,, Preprint, (2016). |
[19] |
L. Colombo, D. Martín de Diego and M. Zuccalli, Optimal control of underactuated mechanical systems: A geometrical approach,, Journal Mathematical Physics, 51 (2010).
doi: 10.1063/1.3456158. |
[20] |
L. Colombo and D. Martín de Diego, Quasivelocities and Optimal Control of Underactuated Mechanical Systems, Geometry and Physics: XVIII Fall Workshop on Geometry and Physics,, AIP Conference Proceedings, 1260 (2010), 133.
|
[21] |
L. Colombo and D. Martín de Diego, Higher-order variational problems on Lie groups and optimal control applications,, J. Geom. Mech., 6 (2014), 451.
doi: 10.3934/jgm.2014.6.451. |
[22] |
L. Colombo, F. Jimenez and D. Martín de Diego, Discrete second-order Euler-Poincaré equations. An application to optimal control,, International Journal of Geometric Methods in Modern Physics, 9 (2012).
doi: 10.1142/S0219887812500375. |
[23] |
J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids,, Discrete and Continuous Dynamical Systems - Series A, 24 (2009), 213.
doi: 10.3934/dcds.2009.24.213. |
[24] |
J. Cortés and E. Martínez, Mechanical control systems on Lie algebroids,, SIAM J. Control Optim., 41 (2002), 1389. |
[25] |
A. Coste, P. Dazord and A. Weinstein, Grupoïdes symplectiques,, Pub. Dep. Math. Lyon, 2/A (1987), 1.
|
[26] |
P. Crouch and P. Silva Leite, The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces,, J. Dynam. Control Systems, 1 (1995), 177.
doi: 10.1007/BF02254638. |
[27] |
F. Gay-Balmaz, D. D Holm, D. Meier, T. Ratiu and F. Vialard, Invariant higher-order variational problems,, Communications in Mathematical Physics, 309 (2012), 413.
doi: 10.1007/s00220-011-1313-y. |
[28] |
F. Gay-Balmaz, D. D. Holm, D. Meier, T. Ratiu, F. Vialard, Invariant higher-order variational problems II,, Journal of Nonlinear Science, 22 (2012), 553.
doi: 10.1007/s00332-012-9137-2. |
[29] |
F. Gay-Balmaz, D. D. Holm and T. Ratiu, Higher-order Lagrange-Poincaré and Hamilton-Poincaré reductions,, Bulletin of the Brazilian Math. Soc., 42 (2011), 579.
doi: 10.1007/s00574-011-0030-7. |
[30] |
Z. Ge and J. E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators,, Phys. Lett. A, 133 (1988), 134.
doi: 10.1016/0375-9601(88)90773-6. |
[31] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations,, Springer Series in Computational Mathematics, 31 (2002).
doi: 10.1007/978-3-662-05018-7. |
[32] |
P. Higgins and K. Mackenzie, Algebraic constructions in the category of Lie algebroids,, J. Algebra, 129 (1990), 194.
doi: 10.1016/0021-8693(90)90246-K. |
[33] |
D. D. Holm, T. Schamah and C. Stoica, Geometry Mechanics and Symmetry,, Oxford Text in Applied Mathematics, (2009). |
[34] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martinez, Discrete nonholonomic Lagrangian systems on Lie groupoids,, Journal of Nonlinear Science, 18 (2008), 221.
doi: 10.1007/s00332-007-9012-8. |
[35] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids,, Dyn. Syst., 23 (2008), 351.
doi: 10.1080/14689360802294220. |
[36] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Padrón, Discrete dynamics in implicit form,, Discrete and Continuous Dynamical Systems - Series A, 33 (2013), 1117.
doi: 10.3934/dcds.2013.33.1117. |
[37] |
A. Iserles, H. Munthe-Kaas, S. Norsett and A. Zanna, Lie-group methods,, Acta Numerica, (2005).
doi: 10.1017/S0962492900002154. |
[38] |
M. Jóźwikowski and M. Rotkiewicz, Bundle-theoretic methods for higher-order variational calculus,, J. Geom. Mech. 6 (2014), 6 (2014), 99.
doi: 10.3934/jgm.2014.6.99. |
[39] |
M. Kobilarov and J. Marsden, Discrete geometric optimal control on Lie groups,, to appear in IEEE Transactions on Robotics, (2010).
doi: 10.1109/TRO.2011.2139130. |
[40] |
M. Kobilarov, Discrete Geometric Motion Control of Autonomous Vehicles,, PhD thesis, (2008). |
[41] |
T. Lee, M. Leok and N. McClamroch, Optimal Attitude Control of a Rigid Body using Geometrically Exact Computations on $SO(3)$,, Journal of Dynamical and Control Systems, 14 (2008), 465.
doi: 10.1007/s10883-008-9047-7. |
[42] |
T. Lee, N. H. McClamroch and M. Leok, Attitude maneuvers of a rigid spacecraft in a circular orbit,, In American Control Conference, (2006), 1742. |
[43] |
M. de León and P. Rodrigues, Generalized Classical Mechanics and Field Theory,, North-Holland Mathematical Studies 112, (1985).
|
[44] |
M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A, (2005). |
[45] |
L. Machado, F. Silva Leite and K. Krakowski, Higher-order smoothing splines versus least squares problems on Riemannian manifolds,, J. Dyn. Control Syst., 16 (2010), 121.
doi: 10.1007/s10883-010-9080-1. |
[46] |
K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids,, London Mathematical society Lecture Notes, 213 (2005).
doi: 10.1017/CBO9781107325883. |
[47] |
J. C. Marrero, E. Martínez and D. Martín de Diego, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313.
doi: 10.1088/0951-7715/19/6/006. |
[48] |
J. C. Marrero, E. Martínez and D Martín de Diego, The local description of discrete mechanics,, Geometry, (2015), 285.
doi: 10.1007/978-1-4939-2441-7_13. |
[49] |
J. C. Marrero, D. Martín de Diego and A. Stern, Symplectic groupoids and discrete constrained Lagrangian mechanics,, Discrete and Continuous Mechanical Systems, 35 (2015), 367.
|
[50] |
E. Martínez, Variational calculus on Lie algebroids,, ESAIM: Control, 14 (2008), 356.
doi: 10.1051/cocv:2007056. |
[51] |
E. Martínez, Geometric formulation of mechanics on Lie algebroids,, In Proceedings of the VIII Fall Workshop on Geometry and Physics, 2 (1999), 209.
|
[52] |
E. Martínez, Lagrangian mechanics on Lie algebroids,, Acta Appl. Math., 67 (2001), 295.
doi: 10.1023/A:1011965919259. |
[53] |
E. Martínez, Higher-order variational calculus on Lie algebroids,, J. Geometric Mechanics, 7 (2015), 81.
doi: 10.3934/jgm.2015.7.81. |
[54] |
E. Martínez and J. Cortés, Lie algebroids in classical mechanics and optimal control,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007).
doi: 10.3842/SIGMA.2007.050. |
[55] |
J. E. Marsden, S. Pekarsky and S. Shkoller, Discrete Euler-Poincaré and Lie- Poisson equations,, Nonlinearity, 12 (1999), 1647.
doi: 10.1088/0951-7715/12/6/314. |
[56] |
J. E. Marsden, S. Pekarsky and S. Shkoller, Symmetry reduction of discrete Lagrangian mechanics on Lie groups,, J. Geom. Phys., 36 (1999).
doi: 10.1016/S0393-0440(00)00018-8. |
[57] |
M. Marsden and M. West, Discrete Mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.
doi: 10.1017/S096249290100006X. |
[58] |
D. Meier, Invariant Higher-Order Variational Problems: Reduction, Geometry and Applications,, Ph.D Thesis, (2013). |
[59] |
J. Moser and A. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials,, Comm. Math. Phys., 139 (1991), 217.
|
[60] |
L. Noakes, G. Heinzinger and B. Paden, Cubic splines on curved spaces,, IMA J. Math. Control Inform., 6 (1989), 465.
doi: 10.1093/imamci/6.4.465. |
[61] |
P. D. Prieto-Martínez and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for autonomous higher-order dynamical systems,, J. Phys. A, 44 (2011).
doi: 10.1088/1751-8113/44/38/385203. |
[62] |
D. Saunders, Prolongations of Lie groupoids and Lie algebroids,, Houston J. Math., 30 (2004), 637.
|
[63] |
J. Sniatycki and W. M. Tulczyjew, Generating forms of Lagrangian submanifolds,, Indiana Univ. Math. J., 22 (1972).
doi: 10.1512/iumj.1973.22.22021. |
[64] |
WM. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne,, C. R. Acad. Sc. Paris, 283 (1976), 15.
|
[65] |
WM. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne,, C. R. Acad. Sc. Paris, 283 (1976), 675.
|
[66] |
J. Moser and A. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials,, Comm. Math. Phys., 139 (1991), 217.
doi: 10.1007/BF02352494. |
[67] |
A. Weinstein, Coisotropic calculus and Poisson groupoids,, J. Math Soc. Japan, 40 (1988), 705.
doi: 10.2969/jmsj/04040705. |
[68] |
A. Weinstein, Lagrangian mechanics and groupoids,, Fields Inst. Comm., 7 (1996), 207.
|
show all references
References:
[1] |
L. Abrunheiro and M. Camarinha, Optimal control of affine connection control systems, from the point of view of lie algebroids,, Int. J. Geom. Methods Mod. Phys., (2014).
doi: 10.1142/S0219887814500388. |
[2] |
R. Benito, de León M and D. Martín de Diego, Higher-order discrete lagrangian mechanics,, Int. Journal of Geometric Methods in Modern Physics, 3 (2006), 421.
doi: 10.1142/S0219887806001235. |
[3] |
A. M. Bloch, Nonholonomic Mechanics and Control,, Interdisciplinary Applied Mathematics Series, 24 (2003).
doi: 10.1007/b97376. |
[4] |
A. M. Bloch, L. Colombo, R. Gupta and D. Martín de Diego, A geometric approach to the optimal control of nonholonomic mechanical systems,, Analysis and geometry in control theory and its applications, (2015).
doi: 10.1007/978-3-319-06917-3_2. |
[5] |
A. M. Bloch and P. E. Crouch, On the equivalence of higher order variational problems and optimal control problems,, Proceedings of 35rd IEEE Conference on Decision and Control, (1996), 1648.
doi: 10.1109/CDC.1996.572780. |
[6] |
A. M. Bloch, I. I. Hussein, M. Leok and A. K. Sanyal, Geometric structure-preserving optimal control of the rigid body,, Journal of Dynamical and Control Systems, 15 (2009), 307.
doi: 10.1007/s10883-009-9071-2. |
[7] |
AI. Bobenko and YB. Suris, Discrete Lagrangian reduction, discrete Euler-Poincaré equations and semidirect products,, Lett. Math. Phys., 49 (1999).
doi: 10.1023/A:1007654605901. |
[8] |
N. Bou-Rabee and J. E. Marsden, Hamilton-Pontryagin integrators on Lie groups,, Foundations of Computational Mathematics, 9 (2009), 197.
doi: 10.1007/s10208-008-9030-4. |
[9] |
A. J. Bruce, K. Grabowska and J. Grabowski, Higher order mechanics on graded bundles,, J. Phys. A, 48 (2015).
doi: 10.1088/1751-8113/48/20/205203. |
[10] |
A. J. Bruce, K. Grabowska, J. Grabowski and P. Urbanski, New Developments In Geometric Mechanics,, To appear in Banach Center Publications. Preprint available at , (2015). |
[11] |
F. Bullo and A. Lewis, Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems,, Texts in Applied Mathematics, (2005).
doi: 10.1007/978-1-4899-7276-7. |
[12] |
C. Burnett, D. Holm and D. Meier, Geometric integrators for higher-order mechanics on Lie groups,, Proc. R. Soc. A., 469 (2013).
doi: 10.1098/rspa.2013.0249. |
[13] |
J. A. Cadzow, Discrete Calculus of Variations,, Int. J. Control, 11 (1970), 393.
doi: 10.1080/00207177008905922. |
[14] |
M. Camarinha, P. Crouch and F. Silva-Leite, Splines of class $C^k$ on non-Euclidean spaces,, IMA J. Math. Control Info., 12 (1995), 399.
doi: 10.1093/imamci/12.4.399. |
[15] |
D. Chang and J. Marsden, Asymptotic stabilization of the heavy top using controlled Lagrangians,, Proceedings of the 39th IEEE Conference on Decision and Control, (2000), 269.
doi: 10.1109/CDC.2000.912771. |
[16] |
L. Colombo, Geometric and Numerical Methods For Optimal Control of Mechanical Systems,, Ph.D Thesis, (2014). |
[17] |
L. Colombo, S. Ferraro and D. Martín de Diego, Geometric integrators for higher-order variational systems and their application to optimal control,, Preprint, (2014).
doi: 10.1007/s00332-016-9314-9. |
[18] |
L. Colombo and D. Martín de Diego, Second-order constrained variational problems on Lie algebroids,, Preprint, (2016). |
[19] |
L. Colombo, D. Martín de Diego and M. Zuccalli, Optimal control of underactuated mechanical systems: A geometrical approach,, Journal Mathematical Physics, 51 (2010).
doi: 10.1063/1.3456158. |
[20] |
L. Colombo and D. Martín de Diego, Quasivelocities and Optimal Control of Underactuated Mechanical Systems, Geometry and Physics: XVIII Fall Workshop on Geometry and Physics,, AIP Conference Proceedings, 1260 (2010), 133.
|
[21] |
L. Colombo and D. Martín de Diego, Higher-order variational problems on Lie groups and optimal control applications,, J. Geom. Mech., 6 (2014), 451.
doi: 10.3934/jgm.2014.6.451. |
[22] |
L. Colombo, F. Jimenez and D. Martín de Diego, Discrete second-order Euler-Poincaré equations. An application to optimal control,, International Journal of Geometric Methods in Modern Physics, 9 (2012).
doi: 10.1142/S0219887812500375. |
[23] |
J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids,, Discrete and Continuous Dynamical Systems - Series A, 24 (2009), 213.
doi: 10.3934/dcds.2009.24.213. |
[24] |
J. Cortés and E. Martínez, Mechanical control systems on Lie algebroids,, SIAM J. Control Optim., 41 (2002), 1389. |
[25] |
A. Coste, P. Dazord and A. Weinstein, Grupoïdes symplectiques,, Pub. Dep. Math. Lyon, 2/A (1987), 1.
|
[26] |
P. Crouch and P. Silva Leite, The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces,, J. Dynam. Control Systems, 1 (1995), 177.
doi: 10.1007/BF02254638. |
[27] |
F. Gay-Balmaz, D. D Holm, D. Meier, T. Ratiu and F. Vialard, Invariant higher-order variational problems,, Communications in Mathematical Physics, 309 (2012), 413.
doi: 10.1007/s00220-011-1313-y. |
[28] |
F. Gay-Balmaz, D. D. Holm, D. Meier, T. Ratiu, F. Vialard, Invariant higher-order variational problems II,, Journal of Nonlinear Science, 22 (2012), 553.
doi: 10.1007/s00332-012-9137-2. |
[29] |
F. Gay-Balmaz, D. D. Holm and T. Ratiu, Higher-order Lagrange-Poincaré and Hamilton-Poincaré reductions,, Bulletin of the Brazilian Math. Soc., 42 (2011), 579.
doi: 10.1007/s00574-011-0030-7. |
[30] |
Z. Ge and J. E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators,, Phys. Lett. A, 133 (1988), 134.
doi: 10.1016/0375-9601(88)90773-6. |
[31] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations,, Springer Series in Computational Mathematics, 31 (2002).
doi: 10.1007/978-3-662-05018-7. |
[32] |
P. Higgins and K. Mackenzie, Algebraic constructions in the category of Lie algebroids,, J. Algebra, 129 (1990), 194.
doi: 10.1016/0021-8693(90)90246-K. |
[33] |
D. D. Holm, T. Schamah and C. Stoica, Geometry Mechanics and Symmetry,, Oxford Text in Applied Mathematics, (2009). |
[34] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martinez, Discrete nonholonomic Lagrangian systems on Lie groupoids,, Journal of Nonlinear Science, 18 (2008), 221.
doi: 10.1007/s00332-007-9012-8. |
[35] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids,, Dyn. Syst., 23 (2008), 351.
doi: 10.1080/14689360802294220. |
[36] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Padrón, Discrete dynamics in implicit form,, Discrete and Continuous Dynamical Systems - Series A, 33 (2013), 1117.
doi: 10.3934/dcds.2013.33.1117. |
[37] |
A. Iserles, H. Munthe-Kaas, S. Norsett and A. Zanna, Lie-group methods,, Acta Numerica, (2005).
doi: 10.1017/S0962492900002154. |
[38] |
M. Jóźwikowski and M. Rotkiewicz, Bundle-theoretic methods for higher-order variational calculus,, J. Geom. Mech. 6 (2014), 6 (2014), 99.
doi: 10.3934/jgm.2014.6.99. |
[39] |
M. Kobilarov and J. Marsden, Discrete geometric optimal control on Lie groups,, to appear in IEEE Transactions on Robotics, (2010).
doi: 10.1109/TRO.2011.2139130. |
[40] |
M. Kobilarov, Discrete Geometric Motion Control of Autonomous Vehicles,, PhD thesis, (2008). |
[41] |
T. Lee, M. Leok and N. McClamroch, Optimal Attitude Control of a Rigid Body using Geometrically Exact Computations on $SO(3)$,, Journal of Dynamical and Control Systems, 14 (2008), 465.
doi: 10.1007/s10883-008-9047-7. |
[42] |
T. Lee, N. H. McClamroch and M. Leok, Attitude maneuvers of a rigid spacecraft in a circular orbit,, In American Control Conference, (2006), 1742. |
[43] |
M. de León and P. Rodrigues, Generalized Classical Mechanics and Field Theory,, North-Holland Mathematical Studies 112, (1985).
|
[44] |
M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A, (2005). |
[45] |
L. Machado, F. Silva Leite and K. Krakowski, Higher-order smoothing splines versus least squares problems on Riemannian manifolds,, J. Dyn. Control Syst., 16 (2010), 121.
doi: 10.1007/s10883-010-9080-1. |
[46] |
K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids,, London Mathematical society Lecture Notes, 213 (2005).
doi: 10.1017/CBO9781107325883. |
[47] |
J. C. Marrero, E. Martínez and D. Martín de Diego, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313.
doi: 10.1088/0951-7715/19/6/006. |
[48] |
J. C. Marrero, E. Martínez and D Martín de Diego, The local description of discrete mechanics,, Geometry, (2015), 285.
doi: 10.1007/978-1-4939-2441-7_13. |
[49] |
J. C. Marrero, D. Martín de Diego and A. Stern, Symplectic groupoids and discrete constrained Lagrangian mechanics,, Discrete and Continuous Mechanical Systems, 35 (2015), 367.
|
[50] |
E. Martínez, Variational calculus on Lie algebroids,, ESAIM: Control, 14 (2008), 356.
doi: 10.1051/cocv:2007056. |
[51] |
E. Martínez, Geometric formulation of mechanics on Lie algebroids,, In Proceedings of the VIII Fall Workshop on Geometry and Physics, 2 (1999), 209.
|
[52] |
E. Martínez, Lagrangian mechanics on Lie algebroids,, Acta Appl. Math., 67 (2001), 295.
doi: 10.1023/A:1011965919259. |
[53] |
E. Martínez, Higher-order variational calculus on Lie algebroids,, J. Geometric Mechanics, 7 (2015), 81.
doi: 10.3934/jgm.2015.7.81. |
[54] |
E. Martínez and J. Cortés, Lie algebroids in classical mechanics and optimal control,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007).
doi: 10.3842/SIGMA.2007.050. |
[55] |
J. E. Marsden, S. Pekarsky and S. Shkoller, Discrete Euler-Poincaré and Lie- Poisson equations,, Nonlinearity, 12 (1999), 1647.
doi: 10.1088/0951-7715/12/6/314. |
[56] |
J. E. Marsden, S. Pekarsky and S. Shkoller, Symmetry reduction of discrete Lagrangian mechanics on Lie groups,, J. Geom. Phys., 36 (1999).
doi: 10.1016/S0393-0440(00)00018-8. |
[57] |
M. Marsden and M. West, Discrete Mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.
doi: 10.1017/S096249290100006X. |
[58] |
D. Meier, Invariant Higher-Order Variational Problems: Reduction, Geometry and Applications,, Ph.D Thesis, (2013). |
[59] |
J. Moser and A. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials,, Comm. Math. Phys., 139 (1991), 217.
|
[60] |
L. Noakes, G. Heinzinger and B. Paden, Cubic splines on curved spaces,, IMA J. Math. Control Inform., 6 (1989), 465.
doi: 10.1093/imamci/6.4.465. |
[61] |
P. D. Prieto-Martínez and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for autonomous higher-order dynamical systems,, J. Phys. A, 44 (2011).
doi: 10.1088/1751-8113/44/38/385203. |
[62] |
D. Saunders, Prolongations of Lie groupoids and Lie algebroids,, Houston J. Math., 30 (2004), 637.
|
[63] |
J. Sniatycki and W. M. Tulczyjew, Generating forms of Lagrangian submanifolds,, Indiana Univ. Math. J., 22 (1972).
doi: 10.1512/iumj.1973.22.22021. |
[64] |
WM. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne,, C. R. Acad. Sc. Paris, 283 (1976), 15.
|
[65] |
WM. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne,, C. R. Acad. Sc. Paris, 283 (1976), 675.
|
[66] |
J. Moser and A. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials,, Comm. Math. Phys., 139 (1991), 217.
doi: 10.1007/BF02352494. |
[67] |
A. Weinstein, Coisotropic calculus and Poisson groupoids,, J. Math Soc. Japan, 40 (1988), 705.
doi: 10.2969/jmsj/04040705. |
[68] |
A. Weinstein, Lagrangian mechanics and groupoids,, Fields Inst. Comm., 7 (1996), 207.
|
[1] |
Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451 |
[2] |
Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81 |
[3] |
Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 |
[4] |
Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213 |
[5] |
Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001 |
[6] |
Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367 |
[7] |
Gennadi Sardanashvily. Lagrangian dynamics of submanifolds. Relativistic mechanics. Journal of Geometric Mechanics, 2012, 4 (1) : 99-110. doi: 10.3934/jgm.2012.4.99 |
[8] |
Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105 |
[9] |
Pedro D. Prieto-Martínez, Narciso Román-Roy. Higher-order mechanics: Variational principles and other topics. Journal of Geometric Mechanics, 2013, 5 (4) : 493-510. doi: 10.3934/jgm.2013.5.493 |
[10] |
Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990 |
[11] |
Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197-223. doi: 10.3934/jgm.2011.3.197 |
[12] |
Cédric M. Campos, Elisa Guzmán, Juan Carlos Marrero. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (1) : 1-26. doi: 10.3934/jgm.2012.4.1 |
[13] |
José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213 |
[14] |
Monica Motta, Caterina Sartori. Asymptotic problems in optimal control with a vanishing Lagrangian and unbounded data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4527-4552. doi: 10.3934/dcds.2015.35.4527 |
[15] |
Dennise García-Beltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295-315. doi: 10.3934/jgm.2015.7.295 |
[16] |
Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether currents for higher-order variational problems of Herglotz type with time delay. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 91-102. doi: 10.3934/dcdss.2018006 |
[17] |
Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014 |
[18] |
K. C. H. Mackenzie. Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electronic Research Announcements, 1998, 4: 74-87. |
[19] |
Andrew James Bruce, Katarzyna Grabowska, Giovanni Moreno. On a geometric framework for Lagrangian supermechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 411-437. doi: 10.3934/jgm.2017016 |
[20] |
Marie-Claude Arnaud. When are the invariant submanifolds of symplectic dynamics Lagrangian?. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1811-1827. doi: 10.3934/dcds.2014.34.1811 |
2017 Impact Factor: 1.179
Tools
Metrics
Other articles
by authors
[Back to Top]