November  2016, 36(11): 6201-6256. doi: 10.3934/dcds.2016071

Attractors of Hamilton nonlinear PDEs

1. 

Faculty of Mathematics of Vienna University, Oskar-Morgenstern-Platz 1, Vienna 1090, Austria

Received  October 2015 Revised  May 2016 Published  August 2016

This is a survey of results on long time behavior and attractors for Hamiltonian nonlinear partial differential equations, considering the global attraction to stationary states, stationary orbits, and solitons, the adiabatic effective dynamics of the solitons, and the asymptotic stability of the solitary manifolds. The corresponding numerical results and relations to quantum postulates are considered.
    This theory differs significantly from the theory of attractors of dissipative systems where the attraction to stationary states is due to an energy dissipation caused by a friction. For the Hamilton equations the friction and energy dissipation are absent, and the attraction is caused by radiation which brings the energy irrevocably to infinity.
Citation: Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071
References:
[1]

L. Landau, On the problem of turbulence,, C. R. (Doklady) Acad. Sci. URSS (N.S.), 44 (1944), 311. Google Scholar

[2]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, vol. 83 of Encyclopedia of Mathematics and its Applications,, Cambridge University Press, (2001). doi: 10.1017/CBO9780511546754. Google Scholar

[3]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, vol. 25 of Mathematical Surveys and Monographs,, American Mathematical Society, (1988). Google Scholar

[4]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics,, Springer-Verlag, (1981). Google Scholar

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, vol. 25 of Studies in Mathematics and its Applications,, North-Holland Publishing Co., (1992). Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, vol. 49 of American Mathematical Society Colloquium Publications,, American Mathematical Society, (2002). Google Scholar

[7]

N. Bohr, On the constitution of atoms and molecules,, Phil. Mag., 26 (1913), 1. Google Scholar

[8]

A. Komech, Quantum Mechanics: Genesis and Achievements,, Springer, (2013). doi: 10.1007/978-94-007-5542-0. Google Scholar

[9]

J. J. Sakurai, Advanced Quantum Mechanics,, Addison-Wesley, (1967). doi: 10.1119/1.1974573. Google Scholar

[10]

W. Heisenberg, Der derzeitige Stand der nichtlinearen Spinortheorie der Elementarteilchen,, Acta Phys. Austriaca, 14 (1961), 328. Google Scholar

[11]

W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles,, Interscience, (1966). doi: 10.1007/978-3-642-61742-3_62. Google Scholar

[12]

F. Bonetto, J. L. Lebowitz and L. Rey-Bellet, Fourier's law: A challenge to theorists,, in Mathematical physics 2000, (2000), 128. doi: 10.1142/9781848160224_0008. Google Scholar

[13]

M. Gell-Mann, Symmetries of baryons and mesons,, Phys. Rev. (2), 125 (1962), 1067. doi: 10.1103/PhysRev.125.1067. Google Scholar

[14]

Y. Ne'eman, Unified interactions in the unitary gauge theory,, Nuclear Phys., 30 (1962), 347. doi: 10.1016/0029-5582(62)90058-5. Google Scholar

[15]

R. K. Adair and E. C. Fowler, Strange Particles,, Interscience Publishers John Wiley & Sons, (1963). Google Scholar

[16]

F. Halzen and A. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics,, John Wiley & Sons, (1984). doi: 10.1119/1.14146. Google Scholar

[17]

V. E. Barnes, P. L. Connolly, D. J. Crennell, B. B. Culwick, W. C. Delaney, W. B. Fowler, P. E. Hagerty, E. L. Hart, N. Horwitz, P. V. C. Hough, J. E. Jensen, J. K. Kopp, K. W. Lai, J. Leitner, J. L. Lloyd, G. W. London, T. W. Morris, Y. Oren, R. B. Palmer, A. G. Prodell, D. Radojičić, D. C. Rahm, C. R. Richardson, N. P. Samios, J. R. Sanford, R. P. Shutt, J. R. Smith, D. L. Stonehill, R. C. Strand, A. M. Thorndike, M. S. Webster, W. J. Willis and S. S. Yamamoto, Observation of a hyperon with strangeness minus three,, Phys. Rev. Lett., 12 (1964), 204. doi: 10.1103/PhysRevLett.12.204. Google Scholar

[18]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213. Google Scholar

[19]

K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen,, Math. Z., 77 (1961), 295. doi: 10.1007/BF01180181. Google Scholar

[20]

J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires,, Dunod; Gauthier-Villars, (1969). Google Scholar

[21]

I. Segal, Quantization and dispersion for nonlinear relativistic equations,, in Mathematical Theory of Elementary Particles (Proc. Conf., (1965), 79. Google Scholar

[22]

I. Segal, Dispersion for non-linear relativistic equations. II,, Ann. Sci. École Norm. Sup. (4), 1 (1968), 459. Google Scholar

[23]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations,, Proc. Roy. Soc. Ser. A, 306 (1968), 291. doi: 10.1098/rspa.1968.0151. Google Scholar

[24]

W. A. Strauss, Decay and asymptotics for $\square u=F(u)$,, J. Functional Analysis, 2 (1968), 409. doi: 10.1016/0022-1236(68)90004-9. Google Scholar

[25]

C. S. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation,, Comm. Pure Appl. Math., 25 (1972), 1. doi: 10.1002/cpa.3160250103. Google Scholar

[26]

W. A. Strauss, Nonlinear scattering theory at low energy,, J. Funct. Anal., 41 (1981), 110. doi: 10.1016/0022-1236(81)90063-X. Google Scholar

[27]

W. A. Strauss, Nonlinear scattering theory at low energy: sequel,, J. Funct. Anal., 43 (1981), 281. doi: 10.1016/0022-1236(81)90019-7. Google Scholar

[28]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Comm. Math. Phys., 55 (1977), 149. doi: 10.1007/BF01626517. Google Scholar

[29]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar

[30]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions,, Arch. Rational Mech. Anal., 82 (1983), 347. doi: 10.1007/BF00250556. Google Scholar

[31]

L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationels,, Hermann, (1934). Google Scholar

[32]

L. Lusternik and L. Schnirelmann, Topological methods in variational problems and their applications to differetial geometry of surfaces,, Uspekhi Mat. Nauk, 2 (1947), 166. Google Scholar

[33]

M. J. Esteban, V. Georgiev and E. Séré, Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations,, Calc. Var. Partial Differential Equations, 4 (1996), 265. doi: 10.1007/BF01254347. Google Scholar

[34]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I,, J. Funct. Anal., 74 (1987), 160. doi: 10.1016/0022-1236(87)90044-9. Google Scholar

[35]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II,, J. Funct. Anal., 94 (1990), 308. doi: 10.1016/0022-1236(90)90016-E. Google Scholar

[36]

H. Lamb, On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium,, Proc. London Math. Soc., 32 (1900), 208. doi: 10.1112/plms/s1-32.1.208. Google Scholar

[37]

A. I. Komech, Stabilization of the interaction of a string with a nonlinear oscillator,, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (): 35. Google Scholar

[38]

A. I. Komech, On stabilization of string-nonlinear oscillator interaction,, J. Math. Anal. Appl., 196 (1995), 384. doi: 10.1006/jmaa.1995.1415. Google Scholar

[39]

A. I. Komech, On the stabilization of string-oscillator interaction,, Russian J. Math. Phys., 3 (1995), 227. Google Scholar

[40]

A. Komech, On transitions to stationary states in one-dimensional nonlinear wave equations,, Arch. Ration. Mech. Anal., 149 (1999), 213. doi: 10.1007/s002050050173. Google Scholar

[41]

A. I. Komech, Attractors of nonlinear Hamiltonian one-dimensional wave equations,, Uspekhi Mat. Nauk, 55 (2000), 45. doi: 10.1070/rm2000v055n01ABEH000249. Google Scholar

[42]

A. Komech, H. Spohn and M. Kunze, Long-time asymptotics for a classical particle interacting with a scalar wave field,, Comm. Partial Differential Equations, 22 (1997), 307. Google Scholar

[43]

A. Komech and H. Spohn, Long-time asymptotics for the coupled Maxwell-Lorentz equations,, Comm. Partial Differential Equations, 25 (2000), 559. doi: 10.1080/03605300008821524. Google Scholar

[44]

J. D. Jackson, Classical Electrodynamics,, 2nd edition, (1975). Google Scholar

[45]

H. Spohn, Dynamics of Charged Particles and Their Radiation Field,, Cambridge University Press, (2004). doi: 10.1017/CBO9780511535178. Google Scholar

[46]

A. I. Komech and A. E. Merzon, Scattering in the nonlinear Lamb system,, Phys. Lett. A, 373 (2009), 1005. doi: 10.1016/j.physleta.2009.01.054. Google Scholar

[47]

A. I. Komech and A. E. Merzon, On asymptotic completeness for scattering in the nonlinear Lamb system,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3081428. Google Scholar

[48]

A. I. Komech and A. E. Merzon, On asymptotic completeness of scattering in the nonlinear Lamb system, II,, J. Math. Phys., 54 (2013). doi: 10.1063/1.4773288. Google Scholar

[49]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 472. doi: 10.1137/0516034. Google Scholar

[50]

A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations,, Comm. Math. Phys., 133 (1990), 119. doi: 10.1007/BF02096557. Google Scholar

[51]

A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data,, J. Differential Equations, 98 (1992), 376. doi: 10.1016/0022-0396(92)90098-8. Google Scholar

[52]

C.-A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations,, J. Differential Equations, 141 (1997), 310. doi: 10.1006/jdeq.1997.3345. Google Scholar

[53]

A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations,, Invent. Math., 136 (1999), 9. doi: 10.1007/s002220050303. Google Scholar

[54]

A. Soffer and M. I. Weinstein, Selection of the ground state for nonlinear Schrödinger equations,, Rev. Math. Phys., 16 (2004), 977. doi: 10.1142/S0129055X04002175. Google Scholar

[55]

A. Soffer, Soliton dynamics and scattering,, in International Congress of Mathematicians. Vol. III, (2006), 459. Google Scholar

[56]

V. S. Buslaev, A. I. Komech, E. A. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator,, Comm. Partial Differential Equations, 33 (2008), 669. doi: 10.1080/03605300801970937. Google Scholar

[57]

A. Komech, E. Kopylova and D. Stuart, On asymptotic stability of solitons in a nonlinear Schrödinger equation,, Commun. Pure Appl. Anal., 11 (2012), 1063. doi: 10.3934/cpaa.2012.11.1063. Google Scholar

[58]

V. S. Buslaev and G. S. Perel'man, Scattering for the nonlinear Schrödinger equation: states that are close to a soliton,, Algebra i Analiz, 4 (1992), 63. Google Scholar

[59]

V. S. Buslaev and G. S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations,, in Nonlinear evolution equations, (1995), 75. doi: 10.1090/trans2/164/04. Google Scholar

[60]

V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 419. doi: 10.1016/S0294-1449(02)00018-5. Google Scholar

[61]

R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves,, Comm. Math. Phys., 164 (1994), 305. doi: 10.1007/BF02101705. Google Scholar

[62]

J. R. Miller and M. I. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave equation,, Comm. Pure Appl. Math., 49 (1996), 399. doi: 10.1002/(SICI)1097-0312(199604)49:4<399::AID-CPA4>3.0.CO;2-7. Google Scholar

[63]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 54 (2001), 1110. doi: 10.1002/cpa.1018. Google Scholar

[64]

S. Cuccagna and T. Mizumachi, On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations,, Comm. Math. Phys., 284 (2008), 51. doi: 10.1007/s00220-008-0605-3. Google Scholar

[65]

Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited,, Nonlinearity, 18 (2005), 55. doi: 10.1088/0951-7715/18/1/004. Google Scholar

[66]

H. Lindblad and T. Tao, Asymptotic decay for a one-dimensional nonlinear wave equation,, Anal. PDE, 5 (2012), 411. doi: 10.2140/apde.2012.5.411. Google Scholar

[67]

V. Imaykin, A. Komech and B. Vainberg, On scattering of solitons for the Klein-Gordon equation coupled to a particle,, Comm. Math. Phys., 268 (2006), 321. doi: 10.1007/s00220-006-0088-z. Google Scholar

[68]

V. Imaykin, A. Komech and H. Spohn, Scattering asymptotics for a charged particle coupled to the Maxwell field,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3567957. Google Scholar

[69]

A. Komech and E. Kopylova, Scattering of solitons for the Schrödinger equation coupled to a particle,, Russ. J. Math. Phys., 13 (2006), 158. doi: 10.1134/S106192080602004X. Google Scholar

[70]

A. I. Komech, E. A. Kopylova and H. Spohn, Scattering of solitons for Dirac equation coupled to a particle,, J. Math. Anal. Appl., 383 (2011), 265. doi: 10.1016/j.jmaa.2011.05.037. Google Scholar

[71]

V. Imaykin, A. Komech and B. Vainberg, Scattering of solitons for coupled wave-particle equations,, J. Math. Anal. Appl., 389 (2012), 713. doi: 10.1016/j.jmaa.2011.12.016. Google Scholar

[72]

V. M. Imaykin, Soliton asymptotics for systems of "field-particle'' type,, Uspekhi Mat. Nauk, 68 (2013), 33. Google Scholar

[73]

A. Bensoussan, C. Iliine and A. Komech, Breathers for a relativistic nonlinear wave equation,, Arch. Ration. Mech. Anal., 165 (2002), 317. doi: 10.1007/s00205-002-0226-5. Google Scholar

[74]

E. A. Kopylova and A. I. Komech, On asymptotic stability of moving kink for relativistic Ginzburg-Landau equation,, Comm. Math. Phys., 302 (2011), 225. doi: 10.1007/s00220-010-1184-7. Google Scholar

[75]

E. Kopylova and A. I. Komech, On asymptotic stability of kink for relativistic Ginzburg-Landau equations,, Arch. Ration. Mech. Anal., 202 (2011), 213. doi: 10.1007/s00205-011-0415-1. Google Scholar

[76]

E. A. Kopylova, Asymptotic stability of solitons for nonlinear hyperbolic equations,, Uspekhi Mat. Nauk, 68 (2013), 91. Google Scholar

[77]

A. I. Komech, E. A. Kopylova and S. A. Kopylov, On nonlinear wave equations with parabolic potentials,, J. Spectr. Theory, 3 (2013), 485. doi: 10.4171/JST/52. Google Scholar

[78]

A. Komech and E. Kopylova, On eigenfunction expansion of solutions to the Hamilton equations,, J. Stat. Phys., 154 (2014), 503. doi: 10.1007/s10955-013-0846-1. Google Scholar

[79]

N. Boussaid and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations,, Comm. Partial Differential Equations, 37 (2012), 1001. doi: 10.1080/03605302.2012.665973. Google Scholar

[80]

J. Fröhlich and Z. Gang, Emission of Cherenkov radiation as a mechanism for Hamiltonian friction,, Adv. Math., 264 (2014), 183. doi: 10.1016/j.aim.2014.07.013. Google Scholar

[81]

Y. Martel, F. Merle and T.-P. Tsai, Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations,, Comm. Math. Phys., 231 (2002), 347. doi: 10.1007/s00220-002-0723-2. Google Scholar

[82]

G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations,, Comm. Partial Differential Equations, 29 (2004), 1051. doi: 10.1081/PDE-200033754. Google Scholar

[83]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS,, ArXiv Mathematics e-prints, (). Google Scholar

[84]

I. Rodnianski, W. Schlag and A. Soffer, Dispersive analysis of charge transfer models,, Comm. Pure Appl. Math., 58 (2005), 149. doi: 10.1002/cpa.20066. Google Scholar

[85]

Y. Martel, Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations,, Amer. J. Math., 127 (2005), 1103. doi: 10.1353/ajm.2005.0033. Google Scholar

[86]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators,, Academic Press [Harcourt Brace Jovanovich, (1978). Google Scholar

[87]

I. M. Sigal, Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions,, Comm. Math. Phys., 153 (1993), 297. Google Scholar

[88]

M. Merkli and I. M. Sigal, A time-dependent theory of quantum resonances,, Comm. Math. Phys., 201 (1999), 549. doi: 10.1007/s002200050568. Google Scholar

[89]

T.-P. Tsai and H.-T. Yau, Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data,, Adv. Theor. Math. Phys., 6 (2002), 107. doi: 10.4310/ATMP.2002.v6.n1.a2. Google Scholar

[90]

T.-P. Tsai and H.-T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions,, Comm. Pure Appl. Math., 55 (2002), 153. doi: 10.1002/cpa.3012. Google Scholar

[91]

T.-P. Tsai, Asymptotic dynamics of nonlinear Schrödinger equations with many bound states,, J. Differential Equations, 192 (2003), 225. doi: 10.1016/S0022-0396(03)00041-X. Google Scholar

[92]

D. Bambusi and S. Cuccagna, On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential,, Amer. J. Math., 133 (2011), 1421. doi: 10.1353/ajm.2011.0034. Google Scholar

[93]

S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states,, Comm. Math. Phys., 305 (2011), 279. doi: 10.1007/s00220-011-1265-2. Google Scholar

[94]

T. Harada and H. Maeda, Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity,, Classical Quantum Gravity, 21 (2004), 371. doi: 10.1088/0264-9381/21/2/003. Google Scholar

[95]

M. Dafermos and I. Rodnianski, A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds,, Invent. Math., 185 (2011), 467. doi: 10.1007/s00222-010-0309-0. Google Scholar

[96]

D. Tataru, Local decay of waves on asymptotically flat stationary space-times,, Amer. J. Math., 135 (2013), 361. doi: 10.1353/ajm.2013.0012. Google Scholar

[97]

L. Andersson and P. Blue, Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior,, J. Hyperbolic Differ. Equ., 12 (2015), 689. doi: 10.1142/S0219891615500204. Google Scholar

[98]

R. Donninger, W. Schlag and A. Soffer, On pointwise decay of linear waves on a Schwarzschild black hole background,, Comm. Math. Phys., 309 (2012), 51. doi: 10.1007/s00220-011-1393-8. Google Scholar

[99]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,, Invent. Math., 166 (2006), 645. doi: 10.1007/s00222-006-0011-4. Google Scholar

[100]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation,, Acta Math., 201 (2008), 147. doi: 10.1007/s11511-008-0031-6. Google Scholar

[101]

C. E. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications,, Amer. J. Math., 133 (2011), 1029. doi: 10.1353/ajm.2011.0029. Google Scholar

[102]

T. Duyckaerts, C. Kenig and F. Merle, Profiles of bounded radial solutions of the focusing, energy-critical wave equation,, Geom. Funct. Anal., 22 (2012), 639. doi: 10.1007/s00039-012-0174-7. Google Scholar

[103]

T. Duyckaerts, C. Kenig and F. Merle, Scattering for radial, bounded solutions of focusing supercritical wave equations,, Int. Math. Res. Not. IMRN, (): 224. Google Scholar

[104]

J. Krieger, K. Nakanishi and W. Schlag, Center-stable manifold of the ground state in the energy space for the critical wave equation,, Math. Ann., 361 (2015), 1. doi: 10.1007/s00208-014-1059-x. Google Scholar

[105]

T. Duyckaerts, C. Kenig and F. Merle, Concentration-compactness and universal profiles for the non-radial energy critical wave equation,, Nonlinear Anal., 138 (2016), 44. doi: 10.1016/j.na.2015.12.027. Google Scholar

[106]

K. Nakanishi and W. Schlag, Invariant Manifolds and Dispersive Hamiltonian Evolution Equations,, Zurich Lectures in Advanced Mathematics, (2011). doi: 10.4171/095. Google Scholar

[107]

J. Krieger and W. Schlag, Concentration Compactness for Critical Wave Maps,, EMS Monographs in Mathematics, (2012). doi: 10.4171/106. Google Scholar

[108]

C. E. Kenig, A. Lawrie and W. Schlag, Relaxation of wave maps exterior to a ball to harmonic maps for all data,, Geom. Funct. Anal., 24 (2014), 610. doi: 10.1007/s00039-014-0262-y. Google Scholar

[109]

C. Kenig, A. Lawrie, B. Liu and W. Schlag, Stable soliton resolution for exterior wave maps in all equivariance classes,, Adv. Math., 285 (2015), 235. doi: 10.1016/j.aim.2015.08.007. Google Scholar

[110]

P. D. Lax, C. S. Morawetz and R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle,, Comm. Pure Appl. Math., 16 (1963), 477. doi: 10.1002/cpa.3160160407. Google Scholar

[111]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151. Google Scholar

[112]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions,, Duke Math. J., 46 (1979), 583. Google Scholar

[113]

A. Komech and E. Kopylova, Dispersion Decay and Scattering Theory,, John Wiley & Sons, (2012). doi: 10.1002/9781118382868. Google Scholar

[114]

E. A. Kopylova, Dispersion estimates for the Schrödinger and Klein-Gordon equations,, Uspekhi Mat. Nauk, 65 (2010), 97. doi: 10.1070/RM2010v065n01ABEH004662. Google Scholar

[115]

A. I. Komech and E. A. Kopylova, Dispersive decay for the magnetic Schrödinger equation,, J. Funct. Anal., 264 (2013), 735. doi: 10.1016/j.jfa.2012.12.001. Google Scholar

[116]

A. I. Komech, E. A. Kopylova and M. Kunze, Dispersive estimates for 1D discrete Schrödinger and Klein-Gordon equations,, Appl. Anal., 85 (2006), 1487. doi: 10.1080/00036810601074321. Google Scholar

[117]

A. I. Komech, E. A. Kopylova and B. R. Vainberg, On dispersive properties of discrete 2D Schrödinger and Klein-Gordon equations,, J. Funct. Anal., 254 (2008), 2227. doi: 10.1016/j.jfa.2008.01.005. Google Scholar

[118]

E. A. Kopylova, Dispersive estimates for discrete Schrödinger and Klein-Gordon equations,, Algebra i Analiz, 21 (2009), 87. doi: 10.1090/S1061-0022-2010-01115-4. Google Scholar

[119]

N. Boussaid, Stable directions for small nonlinear Dirac standing waves,, Comm. Math. Phys., 268 (2006), 757. doi: 10.1007/s00220-006-0112-3. Google Scholar

[120]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials,, Invent. Math., 155 (2004), 451. doi: 10.1007/s00222-003-0325-4. Google Scholar

[121]

M. Beceanu and M. Goldberg, Schrödinger dispersive estimates for a scaling-critical class of potentials,, Comm. Math. Phys., 314 (2012), 471. doi: 10.1007/s00220-012-1435-x. Google Scholar

[122]

M. B. Erdoğan, M. Goldberg and W. R. Green, Dispersive estimates for four dimensional Schrödinger and wave equations with obstructions at zero energy,, Comm. Partial Differential Equations, 39 (2014), 1936. doi: 10.1080/03605302.2014.921928. Google Scholar

[123]

M. Goldberg and W. R. Green, Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues I: The odd dimensional case,, J. Funct. Anal., 269 (2015), 633. doi: 10.1016/j.jfa.2015.04.004. Google Scholar

[124]

B. Marshall, W. Strauss and S. Wainger, $L^p-L^q$ estimates for the Klein-Gordon equation,, J. Math. Pures Appl. (9), 59 (1980), 417. Google Scholar

[125]

M. Beals and W. Strauss, $L^p$ estimates for the wave equation with a potential,, Comm. Partial Differential Equations, 18 (1993), 1365. doi: 10.1080/03605309308820977. Google Scholar

[126]

J.-L. Journé, A. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators,, Comm. Pure Appl. Math., 44 (1991), 573. doi: 10.1002/cpa.3160440504. Google Scholar

[127]

K. Yajima, Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue,, Comm. Math. Phys., 259 (2005), 475. doi: 10.1007/s00220-005-1375-9. Google Scholar

[128]

P. D'Ancona, L. Fanelli, L. Vega and N. Visciglia, Endpoint Strichartz estimates for the magnetic Schrödinger equation,, J. Funct. Anal., 258 (2010), 3227. doi: 10.1016/j.jfa.2010.02.007. Google Scholar

[129]

P. D'Ancona, Kato smoothing and Strichartz estimates for wave equations with magnetic potentials,, Comm. Math. Phys., 335 (2015), 1. doi: 10.1007/s00220-014-2169-8. Google Scholar

[130]

M. Beceanu and M. Goldberg, Strichartz estimates and maximal operators for the wave equation in $\mathbbR^3$,, J. Funct. Anal., 266 (2014), 1476. doi: 10.1016/j.jfa.2013.11.010. Google Scholar

[131]

A. I. Komech, On attractor of a singular nonlinear $U(1)$-invariant Klein-Gordon equation,, in Progress in analysis, (2001), 599. Google Scholar

[132]

A. I. Komech and A. A. Komech, On the global attraction to solitary waves for the Klein-Gordon equation coupled to a nonlinear oscillator,, C. R. Math. Acad. Sci. Paris, 343 (2006), 111. doi: 10.1016/j.crma.2006.06.009. Google Scholar

[133]

A. Komech and A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field,, Arch. Ration. Mech. Anal., 185 (2007), 105. doi: 10.1007/s00205-006-0039-z. Google Scholar

[134]

A. Komech and A. Komech, On global attraction to solitary waves for the Klein-Gordon field coupled to several nonlinear oscillators,, J. Math. Pures Appl. (9), 93 (2010), 91. doi: 10.1016/j.matpur.2009.08.011. Google Scholar

[135]

A. I. Komech and A. A. Komech, Global attraction to solitary waves in models based on the Klein-Gordon equation,, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008). doi: 10.3842/SIGMA.2008.010. Google Scholar

[136]

A. Komech and A. Komech, Global attraction to solitary waves for Klein-Gordon equation with mean field interaction,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855. doi: 10.1016/j.anihpc.2008.03.005. Google Scholar

[137]

A. Komech and A. Komech, Global attraction to solitary waves for a nonlinear Dirac equation with mean field interaction,, SIAM J. Math. Anal., 42 (2010), 2944. doi: 10.1137/090772125. Google Scholar

[138]

A. Comech, On global attraction to solitary waves. Klein-Gordon equation with mean field interaction at several points,, J. Differential Equations, 252 (2012), 5390. doi: 10.1016/j.jde.2012.02.001. Google Scholar

[139]

A. Comech, Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator,, Discrete Contin. Dyn. Syst., 33 (2013), 2711. doi: 10.3934/dcds.2013.33.2711. Google Scholar

[140]

A. A. Komech and A. I. Komech, A variant of the Titchmarsh convolution theorem for distributions on the circle,, Funktsional. Anal. i Prilozhen., 47 (2013), 26. doi: 10.1007/s10688-013-0003-2. Google Scholar

[141]

A. I. Komech, Linear partial differential equations with constant coefficients [ MR1175407 (93f:35003)],, in Partial differential equations, (1994), 121. doi: 10.1007/978-3-642-57876-2_2. Google Scholar

[142]

G. I. Gaudry, Quasimeasures and operators commuting with convolution,, Pacific J. Math., 18 (1966), 461. doi: 10.2140/pjm.1966.18.461. Google Scholar

[143]

E. C. Titchmarsh, The Zeros of Certain Integral Functions,, Proc. London Math. Soc., S2-25 (1926), 2. doi: 10.1112/plms/s2-25.1.283. Google Scholar

[144]

B. Y. Levin, Lectures on Entire Functions, vol. 150 of Translations of Mathematical Monographs,, American Mathematical Society, (1996). Google Scholar

[145]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I, vol. 256 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, 2nd edition, (1990). doi: 10.1007/978-3-642-61497-2. Google Scholar

[146]

O. A. Ladyženskaya, On the principle of limit amplitude,, Uspekhi Mat. Nauk, 12 (1957), 161. Google Scholar

[147]

C. S. Morawetz, The limiting amplitude principle,, Comm. Pure Appl. Math., 15 (1962), 349. doi: 10.1002/cpa.3160150303. Google Scholar

[148]

L. Lewin, Advanced Theory of Waveguides,, Iliffe and Sons, (1951). Google Scholar

[149]

W. Eckhaus and A. van Harten, The Inverse Scattering Transformation and the Theory of Solitons, vol. 50 of North-Holland Mathematics Studies,, North-Holland Publishing Co., (1981). Google Scholar

[150]

A. Komech and H. Spohn, Soliton-like asymptotics for a classical particle interacting with a scalar wave field,, Nonlinear Anal., 33 (1998), 13. doi: 10.1016/S0362-546X(97)00538-5. Google Scholar

[151]

V. Imaykin, A. Komech and N. Mauser, Soliton-type asymptotics for the coupled Maxwell-Lorentz equations,, Ann. Henri Poincaré, 5 (2004), 1117. doi: 10.1007/s00023-004-0193-5. Google Scholar

[152]

V. Imaykin, A. Komech and H. Spohn, Scattering theory for a particle coupled to a scalar field,, Discrete Contin. Dyn. Syst., 10 (2004), 387. doi: 10.3934/dcds.2004.10.387. Google Scholar

[153]

V. Imaykin, A. Komech and P. A. Markowich, Scattering of solitons of the Klein-Gordon equation coupled to a classical particle,, J. Math. Phys., 44 (2003), 1202. doi: 10.1063/1.1539900. Google Scholar

[154]

V. Imaykin, A. Komech and H. Spohn, Soliton-type asymptotics and scattering for a charge coupled to the Maxwell field,, Russ. J. Math. Phys., 9 (2002), 428. Google Scholar

[155]

V. Imaykin, A. Komech and H. Spohn, Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit,, Monatsh. Math., 142 (2004), 143. doi: 10.1007/s00605-004-0232-9. Google Scholar

[156]

A. I. Komech, N. J. Mauser and A. P. Vinnichenko, Attraction to solitons in relativistic nonlinear wave equations,, Russ. J. Math. Phys., 11 (2004), 289. Google Scholar

[157]

T. V. Dudnikova, A. I. Komech and H. Spohn, Energy-momentum relation for solitary waves of relativistic wave equations,, Russ. J. Math. Phys., 9 (2002), 153. Google Scholar

[158]

G. L. Lamb Jr., Elements of Soliton Theory,, John Wiley & Sons, (1980). Google Scholar

[159]

M. Abraham, Prinzipien der Dynamik des Elektrons,, Physikal. Zeitschr., 4 (1902), 57. doi: 10.1002/andp.19023150105. Google Scholar

[160]

M. Abraham, Theorie der Elektrizität, Bd.2: Elektromagnetische Theorie der Strahlung,, Teubner, (1905). Google Scholar

[161]

A. Einstein, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?,, Annalen der Physik, 18 (1905), 639. doi: 10.1002/andp.19053231314. Google Scholar

[162]

L. Houllevigue, L'Évolution des Sciences,, A. Collin, (1908). Google Scholar

[163]

R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics. Vol. 2: Mainly Electromagnetism and Matter,, Addison-Wesley Publishing Co., (1964). Google Scholar

[164]

A. Komech, M. Kunze and H. Spohn, Effective dynamics for a mechanical particle coupled to a wave field,, Comm. Math. Phys., 203 (1999), 1. doi: 10.1007/s002200050023. Google Scholar

[165]

M. Kunze and H. Spohn, Adiabatic limit for the Maxwell-Lorentz equations,, Ann. Henri Poincaré, 1 (2000), 625. doi: 10.1007/PL00001010. Google Scholar

[166]

J. Fröhlich, T.-P. Tsai and H.-T. Yau, On the point-particle (Newtonian) limit of the non-linear Hartree equation,, Comm. Math. Phys., 225 (2002), 223. doi: 10.1007/s002200100579. Google Scholar

[167]

J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential,, Comm. Math. Phys., 250 (2004), 613. doi: 10.1007/s00220-004-1128-1. Google Scholar

[168]

D. Stuart, Existence and Newtonian limit of nonlinear bound states in the Einstein-Dirac system,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3294085. Google Scholar

[169]

S. Demoulini and D. Stuart, Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schrödinger system,, Comm. Math. Phys., 290 (2009), 597. doi: 10.1007/s00220-009-0844-y. Google Scholar

[170]

E. Long and D. Stuart, Effective dynamics for solitons in the nonlinear Klein-Gordon-Maxwell system and the Lorentz force law,, Rev. Math. Phys., 21 (2009), 459. doi: 10.1142/S0129055X09003669. Google Scholar

[171]

V. Bach, T. Chen, J. Faupin, J. Fröhlich and I. M. Sigal, Effective dynamics of an electron coupled to an external potential in non-relativistic QED,, Ann. Henri Poincaré, 14 (2013), 1573. doi: 10.1007/s00023-012-0222-8. Google Scholar

show all references

References:
[1]

L. Landau, On the problem of turbulence,, C. R. (Doklady) Acad. Sci. URSS (N.S.), 44 (1944), 311. Google Scholar

[2]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, vol. 83 of Encyclopedia of Mathematics and its Applications,, Cambridge University Press, (2001). doi: 10.1017/CBO9780511546754. Google Scholar

[3]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, vol. 25 of Mathematical Surveys and Monographs,, American Mathematical Society, (1988). Google Scholar

[4]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics,, Springer-Verlag, (1981). Google Scholar

[5]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, vol. 25 of Studies in Mathematics and its Applications,, North-Holland Publishing Co., (1992). Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, vol. 49 of American Mathematical Society Colloquium Publications,, American Mathematical Society, (2002). Google Scholar

[7]

N. Bohr, On the constitution of atoms and molecules,, Phil. Mag., 26 (1913), 1. Google Scholar

[8]

A. Komech, Quantum Mechanics: Genesis and Achievements,, Springer, (2013). doi: 10.1007/978-94-007-5542-0. Google Scholar

[9]

J. J. Sakurai, Advanced Quantum Mechanics,, Addison-Wesley, (1967). doi: 10.1119/1.1974573. Google Scholar

[10]

W. Heisenberg, Der derzeitige Stand der nichtlinearen Spinortheorie der Elementarteilchen,, Acta Phys. Austriaca, 14 (1961), 328. Google Scholar

[11]

W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles,, Interscience, (1966). doi: 10.1007/978-3-642-61742-3_62. Google Scholar

[12]

F. Bonetto, J. L. Lebowitz and L. Rey-Bellet, Fourier's law: A challenge to theorists,, in Mathematical physics 2000, (2000), 128. doi: 10.1142/9781848160224_0008. Google Scholar

[13]

M. Gell-Mann, Symmetries of baryons and mesons,, Phys. Rev. (2), 125 (1962), 1067. doi: 10.1103/PhysRev.125.1067. Google Scholar

[14]

Y. Ne'eman, Unified interactions in the unitary gauge theory,, Nuclear Phys., 30 (1962), 347. doi: 10.1016/0029-5582(62)90058-5. Google Scholar

[15]

R. K. Adair and E. C. Fowler, Strange Particles,, Interscience Publishers John Wiley & Sons, (1963). Google Scholar

[16]

F. Halzen and A. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics,, John Wiley & Sons, (1984). doi: 10.1119/1.14146. Google Scholar

[17]

V. E. Barnes, P. L. Connolly, D. J. Crennell, B. B. Culwick, W. C. Delaney, W. B. Fowler, P. E. Hagerty, E. L. Hart, N. Horwitz, P. V. C. Hough, J. E. Jensen, J. K. Kopp, K. W. Lai, J. Leitner, J. L. Lloyd, G. W. London, T. W. Morris, Y. Oren, R. B. Palmer, A. G. Prodell, D. Radojičić, D. C. Rahm, C. R. Richardson, N. P. Samios, J. R. Sanford, R. P. Shutt, J. R. Smith, D. L. Stonehill, R. C. Strand, A. M. Thorndike, M. S. Webster, W. J. Willis and S. S. Yamamoto, Observation of a hyperon with strangeness minus three,, Phys. Rev. Lett., 12 (1964), 204. doi: 10.1103/PhysRevLett.12.204. Google Scholar

[18]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213. Google Scholar

[19]

K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen,, Math. Z., 77 (1961), 295. doi: 10.1007/BF01180181. Google Scholar

[20]

J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires,, Dunod; Gauthier-Villars, (1969). Google Scholar

[21]

I. Segal, Quantization and dispersion for nonlinear relativistic equations,, in Mathematical Theory of Elementary Particles (Proc. Conf., (1965), 79. Google Scholar

[22]

I. Segal, Dispersion for non-linear relativistic equations. II,, Ann. Sci. École Norm. Sup. (4), 1 (1968), 459. Google Scholar

[23]

C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations,, Proc. Roy. Soc. Ser. A, 306 (1968), 291. doi: 10.1098/rspa.1968.0151. Google Scholar

[24]

W. A. Strauss, Decay and asymptotics for $\square u=F(u)$,, J. Functional Analysis, 2 (1968), 409. doi: 10.1016/0022-1236(68)90004-9. Google Scholar

[25]

C. S. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation,, Comm. Pure Appl. Math., 25 (1972), 1. doi: 10.1002/cpa.3160250103. Google Scholar

[26]

W. A. Strauss, Nonlinear scattering theory at low energy,, J. Funct. Anal., 41 (1981), 110. doi: 10.1016/0022-1236(81)90063-X. Google Scholar

[27]

W. A. Strauss, Nonlinear scattering theory at low energy: sequel,, J. Funct. Anal., 43 (1981), 281. doi: 10.1016/0022-1236(81)90019-7. Google Scholar

[28]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Comm. Math. Phys., 55 (1977), 149. doi: 10.1007/BF01626517. Google Scholar

[29]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar

[30]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions,, Arch. Rational Mech. Anal., 82 (1983), 347. doi: 10.1007/BF00250556. Google Scholar

[31]

L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationels,, Hermann, (1934). Google Scholar

[32]

L. Lusternik and L. Schnirelmann, Topological methods in variational problems and their applications to differetial geometry of surfaces,, Uspekhi Mat. Nauk, 2 (1947), 166. Google Scholar

[33]

M. J. Esteban, V. Georgiev and E. Séré, Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations,, Calc. Var. Partial Differential Equations, 4 (1996), 265. doi: 10.1007/BF01254347. Google Scholar

[34]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I,, J. Funct. Anal., 74 (1987), 160. doi: 10.1016/0022-1236(87)90044-9. Google Scholar

[35]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II,, J. Funct. Anal., 94 (1990), 308. doi: 10.1016/0022-1236(90)90016-E. Google Scholar

[36]

H. Lamb, On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium,, Proc. London Math. Soc., 32 (1900), 208. doi: 10.1112/plms/s1-32.1.208. Google Scholar

[37]

A. I. Komech, Stabilization of the interaction of a string with a nonlinear oscillator,, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (): 35. Google Scholar

[38]

A. I. Komech, On stabilization of string-nonlinear oscillator interaction,, J. Math. Anal. Appl., 196 (1995), 384. doi: 10.1006/jmaa.1995.1415. Google Scholar

[39]

A. I. Komech, On the stabilization of string-oscillator interaction,, Russian J. Math. Phys., 3 (1995), 227. Google Scholar

[40]

A. Komech, On transitions to stationary states in one-dimensional nonlinear wave equations,, Arch. Ration. Mech. Anal., 149 (1999), 213. doi: 10.1007/s002050050173. Google Scholar

[41]

A. I. Komech, Attractors of nonlinear Hamiltonian one-dimensional wave equations,, Uspekhi Mat. Nauk, 55 (2000), 45. doi: 10.1070/rm2000v055n01ABEH000249. Google Scholar

[42]

A. Komech, H. Spohn and M. Kunze, Long-time asymptotics for a classical particle interacting with a scalar wave field,, Comm. Partial Differential Equations, 22 (1997), 307. Google Scholar

[43]

A. Komech and H. Spohn, Long-time asymptotics for the coupled Maxwell-Lorentz equations,, Comm. Partial Differential Equations, 25 (2000), 559. doi: 10.1080/03605300008821524. Google Scholar

[44]

J. D. Jackson, Classical Electrodynamics,, 2nd edition, (1975). Google Scholar

[45]

H. Spohn, Dynamics of Charged Particles and Their Radiation Field,, Cambridge University Press, (2004). doi: 10.1017/CBO9780511535178. Google Scholar

[46]

A. I. Komech and A. E. Merzon, Scattering in the nonlinear Lamb system,, Phys. Lett. A, 373 (2009), 1005. doi: 10.1016/j.physleta.2009.01.054. Google Scholar

[47]

A. I. Komech and A. E. Merzon, On asymptotic completeness for scattering in the nonlinear Lamb system,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3081428. Google Scholar

[48]

A. I. Komech and A. E. Merzon, On asymptotic completeness of scattering in the nonlinear Lamb system, II,, J. Math. Phys., 54 (2013). doi: 10.1063/1.4773288. Google Scholar

[49]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 472. doi: 10.1137/0516034. Google Scholar

[50]

A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations,, Comm. Math. Phys., 133 (1990), 119. doi: 10.1007/BF02096557. Google Scholar

[51]

A. Soffer and M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data,, J. Differential Equations, 98 (1992), 376. doi: 10.1016/0022-0396(92)90098-8. Google Scholar

[52]

C.-A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations,, J. Differential Equations, 141 (1997), 310. doi: 10.1006/jdeq.1997.3345. Google Scholar

[53]

A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations,, Invent. Math., 136 (1999), 9. doi: 10.1007/s002220050303. Google Scholar

[54]

A. Soffer and M. I. Weinstein, Selection of the ground state for nonlinear Schrödinger equations,, Rev. Math. Phys., 16 (2004), 977. doi: 10.1142/S0129055X04002175. Google Scholar

[55]

A. Soffer, Soliton dynamics and scattering,, in International Congress of Mathematicians. Vol. III, (2006), 459. Google Scholar

[56]

V. S. Buslaev, A. I. Komech, E. A. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator,, Comm. Partial Differential Equations, 33 (2008), 669. doi: 10.1080/03605300801970937. Google Scholar

[57]

A. Komech, E. Kopylova and D. Stuart, On asymptotic stability of solitons in a nonlinear Schrödinger equation,, Commun. Pure Appl. Anal., 11 (2012), 1063. doi: 10.3934/cpaa.2012.11.1063. Google Scholar

[58]

V. S. Buslaev and G. S. Perel'man, Scattering for the nonlinear Schrödinger equation: states that are close to a soliton,, Algebra i Analiz, 4 (1992), 63. Google Scholar

[59]

V. S. Buslaev and G. S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations,, in Nonlinear evolution equations, (1995), 75. doi: 10.1090/trans2/164/04. Google Scholar

[60]

V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 419. doi: 10.1016/S0294-1449(02)00018-5. Google Scholar

[61]

R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves,, Comm. Math. Phys., 164 (1994), 305. doi: 10.1007/BF02101705. Google Scholar

[62]

J. R. Miller and M. I. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave equation,, Comm. Pure Appl. Math., 49 (1996), 399. doi: 10.1002/(SICI)1097-0312(199604)49:4<399::AID-CPA4>3.0.CO;2-7. Google Scholar

[63]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 54 (2001), 1110. doi: 10.1002/cpa.1018. Google Scholar

[64]

S. Cuccagna and T. Mizumachi, On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations,, Comm. Math. Phys., 284 (2008), 51. doi: 10.1007/s00220-008-0605-3. Google Scholar

[65]

Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited,, Nonlinearity, 18 (2005), 55. doi: 10.1088/0951-7715/18/1/004. Google Scholar

[66]

H. Lindblad and T. Tao, Asymptotic decay for a one-dimensional nonlinear wave equation,, Anal. PDE, 5 (2012), 411. doi: 10.2140/apde.2012.5.411. Google Scholar

[67]

V. Imaykin, A. Komech and B. Vainberg, On scattering of solitons for the Klein-Gordon equation coupled to a particle,, Comm. Math. Phys., 268 (2006), 321. doi: 10.1007/s00220-006-0088-z. Google Scholar

[68]

V. Imaykin, A. Komech and H. Spohn, Scattering asymptotics for a charged particle coupled to the Maxwell field,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3567957. Google Scholar

[69]

A. Komech and E. Kopylova, Scattering of solitons for the Schrödinger equation coupled to a particle,, Russ. J. Math. Phys., 13 (2006), 158. doi: 10.1134/S106192080602004X. Google Scholar

[70]

A. I. Komech, E. A. Kopylova and H. Spohn, Scattering of solitons for Dirac equation coupled to a particle,, J. Math. Anal. Appl., 383 (2011), 265. doi: 10.1016/j.jmaa.2011.05.037. Google Scholar

[71]

V. Imaykin, A. Komech and B. Vainberg, Scattering of solitons for coupled wave-particle equations,, J. Math. Anal. Appl., 389 (2012), 713. doi: 10.1016/j.jmaa.2011.12.016. Google Scholar

[72]

V. M. Imaykin, Soliton asymptotics for systems of "field-particle'' type,, Uspekhi Mat. Nauk, 68 (2013), 33. Google Scholar

[73]

A. Bensoussan, C. Iliine and A. Komech, Breathers for a relativistic nonlinear wave equation,, Arch. Ration. Mech. Anal., 165 (2002), 317. doi: 10.1007/s00205-002-0226-5. Google Scholar

[74]

E. A. Kopylova and A. I. Komech, On asymptotic stability of moving kink for relativistic Ginzburg-Landau equation,, Comm. Math. Phys., 302 (2011), 225. doi: 10.1007/s00220-010-1184-7. Google Scholar

[75]

E. Kopylova and A. I. Komech, On asymptotic stability of kink for relativistic Ginzburg-Landau equations,, Arch. Ration. Mech. Anal., 202 (2011), 213. doi: 10.1007/s00205-011-0415-1. Google Scholar

[76]

E. A. Kopylova, Asymptotic stability of solitons for nonlinear hyperbolic equations,, Uspekhi Mat. Nauk, 68 (2013), 91. Google Scholar

[77]

A. I. Komech, E. A. Kopylova and S. A. Kopylov, On nonlinear wave equations with parabolic potentials,, J. Spectr. Theory, 3 (2013), 485. doi: 10.4171/JST/52. Google Scholar

[78]

A. Komech and E. Kopylova, On eigenfunction expansion of solutions to the Hamilton equations,, J. Stat. Phys., 154 (2014), 503. doi: 10.1007/s10955-013-0846-1. Google Scholar

[79]

N. Boussaid and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations,, Comm. Partial Differential Equations, 37 (2012), 1001. doi: 10.1080/03605302.2012.665973. Google Scholar

[80]

J. Fröhlich and Z. Gang, Emission of Cherenkov radiation as a mechanism for Hamiltonian friction,, Adv. Math., 264 (2014), 183. doi: 10.1016/j.aim.2014.07.013. Google Scholar

[81]

Y. Martel, F. Merle and T.-P. Tsai, Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations,, Comm. Math. Phys., 231 (2002), 347. doi: 10.1007/s00220-002-0723-2. Google Scholar

[82]

G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations,, Comm. Partial Differential Equations, 29 (2004), 1051. doi: 10.1081/PDE-200033754. Google Scholar

[83]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic stability of N-soliton states of NLS,, ArXiv Mathematics e-prints, (). Google Scholar

[84]

I. Rodnianski, W. Schlag and A. Soffer, Dispersive analysis of charge transfer models,, Comm. Pure Appl. Math., 58 (2005), 149. doi: 10.1002/cpa.20066. Google Scholar

[85]

Y. Martel, Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations,, Amer. J. Math., 127 (2005), 1103. doi: 10.1353/ajm.2005.0033. Google Scholar

[86]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators,, Academic Press [Harcourt Brace Jovanovich, (1978). Google Scholar

[87]

I. M. Sigal, Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions,, Comm. Math. Phys., 153 (1993), 297. Google Scholar

[88]

M. Merkli and I. M. Sigal, A time-dependent theory of quantum resonances,, Comm. Math. Phys., 201 (1999), 549. doi: 10.1007/s002200050568. Google Scholar

[89]

T.-P. Tsai and H.-T. Yau, Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data,, Adv. Theor. Math. Phys., 6 (2002), 107. doi: 10.4310/ATMP.2002.v6.n1.a2. Google Scholar

[90]

T.-P. Tsai and H.-T. Yau, Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions,, Comm. Pure Appl. Math., 55 (2002), 153. doi: 10.1002/cpa.3012. Google Scholar

[91]

T.-P. Tsai, Asymptotic dynamics of nonlinear Schrödinger equations with many bound states,, J. Differential Equations, 192 (2003), 225. doi: 10.1016/S0022-0396(03)00041-X. Google Scholar

[92]

D. Bambusi and S. Cuccagna, On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential,, Amer. J. Math., 133 (2011), 1421. doi: 10.1353/ajm.2011.0034. Google Scholar

[93]

S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states,, Comm. Math. Phys., 305 (2011), 279. doi: 10.1007/s00220-011-1265-2. Google Scholar

[94]

T. Harada and H. Maeda, Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity,, Classical Quantum Gravity, 21 (2004), 371. doi: 10.1088/0264-9381/21/2/003. Google Scholar

[95]

M. Dafermos and I. Rodnianski, A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds,, Invent. Math., 185 (2011), 467. doi: 10.1007/s00222-010-0309-0. Google Scholar

[96]

D. Tataru, Local decay of waves on asymptotically flat stationary space-times,, Amer. J. Math., 135 (2013), 361. doi: 10.1353/ajm.2013.0012. Google Scholar

[97]

L. Andersson and P. Blue, Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior,, J. Hyperbolic Differ. Equ., 12 (2015), 689. doi: 10.1142/S0219891615500204. Google Scholar

[98]

R. Donninger, W. Schlag and A. Soffer, On pointwise decay of linear waves on a Schwarzschild black hole background,, Comm. Math. Phys., 309 (2012), 51. doi: 10.1007/s00220-011-1393-8. Google Scholar

[99]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,, Invent. Math., 166 (2006), 645. doi: 10.1007/s00222-006-0011-4. Google Scholar

[100]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation,, Acta Math., 201 (2008), 147. doi: 10.1007/s11511-008-0031-6. Google Scholar

[101]

C. E. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications,, Amer. J. Math., 133 (2011), 1029. doi: 10.1353/ajm.2011.0029. Google Scholar

[102]

T. Duyckaerts, C. Kenig and F. Merle, Profiles of bounded radial solutions of the focusing, energy-critical wave equation,, Geom. Funct. Anal., 22 (2012), 639. doi: 10.1007/s00039-012-0174-7. Google Scholar

[103]

T. Duyckaerts, C. Kenig and F. Merle, Scattering for radial, bounded solutions of focusing supercritical wave equations,, Int. Math. Res. Not. IMRN, (): 224. Google Scholar

[104]

J. Krieger, K. Nakanishi and W. Schlag, Center-stable manifold of the ground state in the energy space for the critical wave equation,, Math. Ann., 361 (2015), 1. doi: 10.1007/s00208-014-1059-x. Google Scholar

[105]

T. Duyckaerts, C. Kenig and F. Merle, Concentration-compactness and universal profiles for the non-radial energy critical wave equation,, Nonlinear Anal., 138 (2016), 44. doi: 10.1016/j.na.2015.12.027. Google Scholar

[106]

K. Nakanishi and W. Schlag, Invariant Manifolds and Dispersive Hamiltonian Evolution Equations,, Zurich Lectures in Advanced Mathematics, (2011). doi: 10.4171/095. Google Scholar

[107]

J. Krieger and W. Schlag, Concentration Compactness for Critical Wave Maps,, EMS Monographs in Mathematics, (2012). doi: 10.4171/106. Google Scholar

[108]

C. E. Kenig, A. Lawrie and W. Schlag, Relaxation of wave maps exterior to a ball to harmonic maps for all data,, Geom. Funct. Anal., 24 (2014), 610. doi: 10.1007/s00039-014-0262-y. Google Scholar

[109]

C. Kenig, A. Lawrie, B. Liu and W. Schlag, Stable soliton resolution for exterior wave maps in all equivariance classes,, Adv. Math., 285 (2015), 235. doi: 10.1016/j.aim.2015.08.007. Google Scholar

[110]

P. D. Lax, C. S. Morawetz and R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle,, Comm. Pure Appl. Math., 16 (1963), 477. doi: 10.1002/cpa.3160160407. Google Scholar

[111]

S. Agmon, Spectral properties of Schrödinger operators and scattering theory,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151. Google Scholar

[112]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions,, Duke Math. J., 46 (1979), 583. Google Scholar

[113]

A. Komech and E. Kopylova, Dispersion Decay and Scattering Theory,, John Wiley & Sons, (2012). doi: 10.1002/9781118382868. Google Scholar

[114]

E. A. Kopylova, Dispersion estimates for the Schrödinger and Klein-Gordon equations,, Uspekhi Mat. Nauk, 65 (2010), 97. doi: 10.1070/RM2010v065n01ABEH004662. Google Scholar

[115]

A. I. Komech and E. A. Kopylova, Dispersive decay for the magnetic Schrödinger equation,, J. Funct. Anal., 264 (2013), 735. doi: 10.1016/j.jfa.2012.12.001. Google Scholar

[116]

A. I. Komech, E. A. Kopylova and M. Kunze, Dispersive estimates for 1D discrete Schrödinger and Klein-Gordon equations,, Appl. Anal., 85 (2006), 1487. doi: 10.1080/00036810601074321. Google Scholar

[117]

A. I. Komech, E. A. Kopylova and B. R. Vainberg, On dispersive properties of discrete 2D Schrödinger and Klein-Gordon equations,, J. Funct. Anal., 254 (2008), 2227. doi: 10.1016/j.jfa.2008.01.005. Google Scholar

[118]

E. A. Kopylova, Dispersive estimates for discrete Schrödinger and Klein-Gordon equations,, Algebra i Analiz, 21 (2009), 87. doi: 10.1090/S1061-0022-2010-01115-4. Google Scholar

[119]

N. Boussaid, Stable directions for small nonlinear Dirac standing waves,, Comm. Math. Phys., 268 (2006), 757. doi: 10.1007/s00220-006-0112-3. Google Scholar

[120]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials,, Invent. Math., 155 (2004), 451. doi: 10.1007/s00222-003-0325-4. Google Scholar

[121]

M. Beceanu and M. Goldberg, Schrödinger dispersive estimates for a scaling-critical class of potentials,, Comm. Math. Phys., 314 (2012), 471. doi: 10.1007/s00220-012-1435-x. Google Scholar

[122]

M. B. Erdoğan, M. Goldberg and W. R. Green, Dispersive estimates for four dimensional Schrödinger and wave equations with obstructions at zero energy,, Comm. Partial Differential Equations, 39 (2014), 1936. doi: 10.1080/03605302.2014.921928. Google Scholar

[123]

M. Goldberg and W. R. Green, Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues I: The odd dimensional case,, J. Funct. Anal., 269 (2015), 633. doi: 10.1016/j.jfa.2015.04.004. Google Scholar

[124]

B. Marshall, W. Strauss and S. Wainger, $L^p-L^q$ estimates for the Klein-Gordon equation,, J. Math. Pures Appl. (9), 59 (1980), 417. Google Scholar

[125]

M. Beals and W. Strauss, $L^p$ estimates for the wave equation with a potential,, Comm. Partial Differential Equations, 18 (1993), 1365. doi: 10.1080/03605309308820977. Google Scholar

[126]

J.-L. Journé, A. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators,, Comm. Pure Appl. Math., 44 (1991), 573. doi: 10.1002/cpa.3160440504. Google Scholar

[127]

K. Yajima, Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue,, Comm. Math. Phys., 259 (2005), 475. doi: 10.1007/s00220-005-1375-9. Google Scholar

[128]

P. D'Ancona, L. Fanelli, L. Vega and N. Visciglia, Endpoint Strichartz estimates for the magnetic Schrödinger equation,, J. Funct. Anal., 258 (2010), 3227. doi: 10.1016/j.jfa.2010.02.007. Google Scholar

[129]

P. D'Ancona, Kato smoothing and Strichartz estimates for wave equations with magnetic potentials,, Comm. Math. Phys., 335 (2015), 1. doi: 10.1007/s00220-014-2169-8. Google Scholar

[130]

M. Beceanu and M. Goldberg, Strichartz estimates and maximal operators for the wave equation in $\mathbbR^3$,, J. Funct. Anal., 266 (2014), 1476. doi: 10.1016/j.jfa.2013.11.010. Google Scholar

[131]

A. I. Komech, On attractor of a singular nonlinear $U(1)$-invariant Klein-Gordon equation,, in Progress in analysis, (2001), 599. Google Scholar

[132]

A. I. Komech and A. A. Komech, On the global attraction to solitary waves for the Klein-Gordon equation coupled to a nonlinear oscillator,, C. R. Math. Acad. Sci. Paris, 343 (2006), 111. doi: 10.1016/j.crma.2006.06.009. Google Scholar

[133]

A. Komech and A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field,, Arch. Ration. Mech. Anal., 185 (2007), 105. doi: 10.1007/s00205-006-0039-z. Google Scholar

[134]

A. Komech and A. Komech, On global attraction to solitary waves for the Klein-Gordon field coupled to several nonlinear oscillators,, J. Math. Pures Appl. (9), 93 (2010), 91. doi: 10.1016/j.matpur.2009.08.011. Google Scholar

[135]

A. I. Komech and A. A. Komech, Global attraction to solitary waves in models based on the Klein-Gordon equation,, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008). doi: 10.3842/SIGMA.2008.010. Google Scholar

[136]

A. Komech and A. Komech, Global attraction to solitary waves for Klein-Gordon equation with mean field interaction,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855. doi: 10.1016/j.anihpc.2008.03.005. Google Scholar

[137]

A. Komech and A. Komech, Global attraction to solitary waves for a nonlinear Dirac equation with mean field interaction,, SIAM J. Math. Anal., 42 (2010), 2944. doi: 10.1137/090772125. Google Scholar

[138]

A. Comech, On global attraction to solitary waves. Klein-Gordon equation with mean field interaction at several points,, J. Differential Equations, 252 (2012), 5390. doi: 10.1016/j.jde.2012.02.001. Google Scholar

[139]

A. Comech, Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator,, Discrete Contin. Dyn. Syst., 33 (2013), 2711. doi: 10.3934/dcds.2013.33.2711. Google Scholar

[140]

A. A. Komech and A. I. Komech, A variant of the Titchmarsh convolution theorem for distributions on the circle,, Funktsional. Anal. i Prilozhen., 47 (2013), 26. doi: 10.1007/s10688-013-0003-2. Google Scholar

[141]

A. I. Komech, Linear partial differential equations with constant coefficients [ MR1175407 (93f:35003)],, in Partial differential equations, (1994), 121. doi: 10.1007/978-3-642-57876-2_2. Google Scholar

[142]

G. I. Gaudry, Quasimeasures and operators commuting with convolution,, Pacific J. Math., 18 (1966), 461. doi: 10.2140/pjm.1966.18.461. Google Scholar

[143]

E. C. Titchmarsh, The Zeros of Certain Integral Functions,, Proc. London Math. Soc., S2-25 (1926), 2. doi: 10.1112/plms/s2-25.1.283. Google Scholar

[144]

B. Y. Levin, Lectures on Entire Functions, vol. 150 of Translations of Mathematical Monographs,, American Mathematical Society, (1996). Google Scholar

[145]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I, vol. 256 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, 2nd edition, (1990). doi: 10.1007/978-3-642-61497-2. Google Scholar

[146]

O. A. Ladyženskaya, On the principle of limit amplitude,, Uspekhi Mat. Nauk, 12 (1957), 161. Google Scholar

[147]

C. S. Morawetz, The limiting amplitude principle,, Comm. Pure Appl. Math., 15 (1962), 349. doi: 10.1002/cpa.3160150303. Google Scholar

[148]

L. Lewin, Advanced Theory of Waveguides,, Iliffe and Sons, (1951). Google Scholar

[149]

W. Eckhaus and A. van Harten, The Inverse Scattering Transformation and the Theory of Solitons, vol. 50 of North-Holland Mathematics Studies,, North-Holland Publishing Co., (1981). Google Scholar

[150]

A. Komech and H. Spohn, Soliton-like asymptotics for a classical particle interacting with a scalar wave field,, Nonlinear Anal., 33 (1998), 13. doi: 10.1016/S0362-546X(97)00538-5. Google Scholar

[151]

V. Imaykin, A. Komech and N. Mauser, Soliton-type asymptotics for the coupled Maxwell-Lorentz equations,, Ann. Henri Poincaré, 5 (2004), 1117. doi: 10.1007/s00023-004-0193-5. Google Scholar

[152]

V. Imaykin, A. Komech and H. Spohn, Scattering theory for a particle coupled to a scalar field,, Discrete Contin. Dyn. Syst., 10 (2004), 387. doi: 10.3934/dcds.2004.10.387. Google Scholar

[153]

V. Imaykin, A. Komech and P. A. Markowich, Scattering of solitons of the Klein-Gordon equation coupled to a classical particle,, J. Math. Phys., 44 (2003), 1202. doi: 10.1063/1.1539900. Google Scholar

[154]

V. Imaykin, A. Komech and H. Spohn, Soliton-type asymptotics and scattering for a charge coupled to the Maxwell field,, Russ. J. Math. Phys., 9 (2002), 428. Google Scholar

[155]

V. Imaykin, A. Komech and H. Spohn, Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit,, Monatsh. Math., 142 (2004), 143. doi: 10.1007/s00605-004-0232-9. Google Scholar

[156]

A. I. Komech, N. J. Mauser and A. P. Vinnichenko, Attraction to solitons in relativistic nonlinear wave equations,, Russ. J. Math. Phys., 11 (2004), 289. Google Scholar

[157]

T. V. Dudnikova, A. I. Komech and H. Spohn, Energy-momentum relation for solitary waves of relativistic wave equations,, Russ. J. Math. Phys., 9 (2002), 153. Google Scholar

[158]

G. L. Lamb Jr., Elements of Soliton Theory,, John Wiley & Sons, (1980). Google Scholar

[159]

M. Abraham, Prinzipien der Dynamik des Elektrons,, Physikal. Zeitschr., 4 (1902), 57. doi: 10.1002/andp.19023150105. Google Scholar

[160]

M. Abraham, Theorie der Elektrizität, Bd.2: Elektromagnetische Theorie der Strahlung,, Teubner, (1905). Google Scholar

[161]

A. Einstein, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?,, Annalen der Physik, 18 (1905), 639. doi: 10.1002/andp.19053231314. Google Scholar

[162]

L. Houllevigue, L'Évolution des Sciences,, A. Collin, (1908). Google Scholar

[163]

R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics. Vol. 2: Mainly Electromagnetism and Matter,, Addison-Wesley Publishing Co., (1964). Google Scholar

[164]

A. Komech, M. Kunze and H. Spohn, Effective dynamics for a mechanical particle coupled to a wave field,, Comm. Math. Phys., 203 (1999), 1. doi: 10.1007/s002200050023. Google Scholar

[165]

M. Kunze and H. Spohn, Adiabatic limit for the Maxwell-Lorentz equations,, Ann. Henri Poincaré, 1 (2000), 625. doi: 10.1007/PL00001010. Google Scholar

[166]

J. Fröhlich, T.-P. Tsai and H.-T. Yau, On the point-particle (Newtonian) limit of the non-linear Hartree equation,, Comm. Math. Phys., 225 (2002), 223. doi: 10.1007/s002200100579. Google Scholar

[167]

J. Fröhlich, S. Gustafson, B. L. G. Jonsson and I. M. Sigal, Solitary wave dynamics in an external potential,, Comm. Math. Phys., 250 (2004), 613. doi: 10.1007/s00220-004-1128-1. Google Scholar

[168]

D. Stuart, Existence and Newtonian limit of nonlinear bound states in the Einstein-Dirac system,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3294085. Google Scholar

[169]

S. Demoulini and D. Stuart, Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schrödinger system,, Comm. Math. Phys., 290 (2009), 597. doi: 10.1007/s00220-009-0844-y. Google Scholar

[170]

E. Long and D. Stuart, Effective dynamics for solitons in the nonlinear Klein-Gordon-Maxwell system and the Lorentz force law,, Rev. Math. Phys., 21 (2009), 459. doi: 10.1142/S0129055X09003669. Google Scholar

[171]

V. Bach, T. Chen, J. Faupin, J. Fröhlich and I. M. Sigal, Effective dynamics of an electron coupled to an external potential in non-relativistic QED,, Ann. Henri Poincaré, 14 (2013), 1573. doi: 10.1007/s00023-012-0222-8. Google Scholar

[1]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[2]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[3]

Andrey V. Kremnev, Alexander S. Kuleshov. Nonlinear dynamics and stability of the skateboard. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 85-103. doi: 10.3934/dcdss.2010.3.85

[4]

Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295

[5]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure & Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[6]

M. D. Todorov, C. I. Christov. Collision dynamics of circularly polarized solitons in nonintegrable coupled nonlinear Schrödinger system. Conference Publications, 2009, 2009 (Special) : 780-789. doi: 10.3934/proc.2009.2009.780

[7]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[8]

Kenta Nakamura, Tohru Nakamura, Shuichi Kawashima. Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic & Related Models, 2019, 12 (4) : 923-944. doi: 10.3934/krm.2019035

[9]

Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control & Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323

[10]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[11]

M. D. Todorov. Polarization dynamics during takeover collisions of solitons in systems of coupled nonlinears Schödinger equations. Conference Publications, 2011, 2011 (Special) : 1385-1394. doi: 10.3934/proc.2011.2011.1385

[12]

Zhijian Yang, Pengyan Ding, Xiaobin Liu. Attractors and their stability on Boussinesq type equations with gentle dissipation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 911-930. doi: 10.3934/cpaa.2019044

[13]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[14]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[15]

Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

[16]

Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146

[17]

Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397

[18]

Yan Cui, Zhiqiang Wang. Asymptotic stability of wave equations coupled by velocities. Mathematical Control & Related Fields, 2016, 6 (3) : 429-446. doi: 10.3934/mcrf.2016010

[19]

S. Raynor, G. Staffilani. Low regularity stability of solitons for the KDV equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 277-296. doi: 10.3934/cpaa.2003.2.277

[20]

David M. A. Stuart. Solitons on pseudo-Riemannian manifolds: stability and motion. Electronic Research Announcements, 2000, 6: 75-89.

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]