2016, 36(11): 6285-6306. doi: 10.3934/dcds.2016073

Exponential stabilization of a structure with interfacial slip

1. 

University of Wollongong in Dubai, Dubai, United Arab Emirates

2. 

Department of Mathematics and Statistics, College of Sciences, King Fahd University of Petroleum and Minerals, P.O.Box. 5005, Dhahran 31261

Received  May 2015 Revised  July 2016 Published  August 2016

Two exponential stabilization results are proved for a vibrating structure subject to an interfacial slip. More precisely, the structure consists of two identical beams of Timoshenko type and clamped together but allowing for a longitudinal movement between the layers. We will stabilize the system through a transverse friction and also through a viscoelastic damping.
Citation: Assane Lo, Nasser-eddine Tatar. Exponential stabilization of a structure with interfacial slip. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6285-6306. doi: 10.3934/dcds.2016073
References:
[1]

Ammar-Khodja, A. Benabdallah and J. E. M. Rivera, Energy decay for Timoshenko system of memory type,, J. Diff. Eqs., 194 (2003), 82. doi: 10.1016/S0022-0396(03)00185-2.

[2]

C. F. Beards and I. M. A. Imam, The damping of plate vibration by interfacial slip between layers,, Int. J. Mach. Tool. Des. Res., 18 (1978), 131. doi: 10.1016/0020-7357(78)90004-5.

[3]

X.-G. Cao, D.-Y. Liu and G.-Q. Xu, Easy test for stability of laminated beams with structural damping and boundary feedback controls,, J. Dynamical Control Syst., 13 (2007), 313. doi: 10.1007/s10883-007-9022-8.

[4]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping,, Math. Meth. Appl. Sci., 24 (2001), 1043. doi: 10.1002/mma.250.

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping,, Diff. Integral Eqs., 14 (2001), 85.

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems,, Nonl. Anal.: T. M. A., 68 (2008), 177. doi: 10.1016/j.na.2006.10.040.

[7]

M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation,, SIAM J. Control Optim., 42 (2003), 1310. doi: 10.1137/S0363012902408010.

[8]

M. De Lima Santos, Decay rates for solutions of a Timoshenko system with memory conditions at the boundary,, Abstr. Appl. Anal., 7 (2002), 53. doi: 10.1155/S1085337502204133.

[9]

X. S. Han and M. X. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping,, Nonl. Anal.: T. M. A., 70 (2009), 3090. doi: 10.1016/j.na.2008.04.011.

[10]

S. W. Hansen and R. Spies, Structural damping in a laminated beam due to interfacial slip,, J. Sound Vibration, 204 (1997), 183. doi: 10.1006/jsvi.1996.0913.

[11]

Z. Liu and C. Pang, Exponential stability of a viscoelastic Timoshenko beam,, Adv. Math. Sci. Appl., 8 (1998), 343.

[12]

A. Lo and N.-e. Tatar, Stabilization of a laminated beam with interfacial slip,, Electron. J. Diff. Eqs., 129 (2015), 1.

[13]

M. Medjden and N.-e. Tatar, On the wave equation with a temporal nonlocal term,, Dyn. Syst. Appl., 16 (2007), 665.

[14]

M. Medjden and N.-e. Tatar, Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel,, Appl. Math. Comput., 167 (2005), 1221. doi: 10.1016/j.amc.2004.08.035.

[15]

S. Messaoudi, General decay of solutions of a viscoelastic equation,, J. Math. Anal. Appl., 341 (2008), 1457. doi: 10.1016/j.jmaa.2007.11.048.

[16]

S. Messaoudi and M. I. Mustafa, A general result in a memory-type Timoshenko system,, Comm. Pure Appl. Anal., (2013), 957. doi: 10.3934/cpaa.2013.12.957.

[17]

S. Messaoudi and B. Said-Houari, Uniform decay in a Timoshenko-type system with past history,, J. Math. Anal. Appl., 360 (2009), 459. doi: 10.1016/j.jmaa.2009.06.064.

[18]

J. E. Munoz Rivera and F. P. Quispe Gomez, Existence and decay in non linear viscoelasticity,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 6 (2003), 1.

[19]

V. Pata, Exponential stability in linear viscoelasticity,, Quart. Appl. Math., LXIV (2006), 499. doi: 10.1090/S0033-569X-06-01010-4.

[20]

C. A. Rapaso, J. Ferreira, M. L. Santos and N. N. Castro, Exponential stabilization for the Timoshenko system with two weak dampings,, Appl. Math. Lett., 18 (2005), 535. doi: 10.1016/j.aml.2004.03.017.

[21]

J. E. M. Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems: Global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248. doi: 10.1016/S0022-247X(02)00436-5.

[22]

J. E. M. Rivera and R. Racke, Global stability for damped Timoshenko systems,, Discrete Contin. Dyn. Syst., 9 (2003), 1625. doi: 10.3934/dcds.2003.9.1625.

[23]

D. H. Shi and D. X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback,, IMA J. Math. Control Inform., 18 (2001), 395. doi: 10.1093/imamci/18.3.395.

[24]

D. H. Shi, S. H. Hou and D. X. Feng, Feedback stabilization of a Timoshenko beam with an end mass,, Int. J. Control, 69 (1998), 285. doi: 10.1080/002071798222848.

[25]

A. Soufyane and Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping,, Electron. J. Diff. Eqs., 29 (2003), 1.

[26]

N.-e. Tatar, Long time behavior for a viscoelastic problem with a positive definite kernel,, Australian J. Math. Anal. Appl., 1 (2004), 1.

[27]

N.-e. Tatar, Exponential decay for a viscoelastic problem with a singular problem,, Zeit. Angew. Math. Phys., 60 (2009), 640. doi: 10.1007/s00033-008-8030-1.

[28]

N.-e. Tatar, On a large class of kernels yielding exponential stability in viscoelasticity,, Appl. Math. Comp., 215 (2009), 2298. doi: 10.1016/j.amc.2009.08.034.

[29]

N.-e. Tatar, Viscoelastic Timoshenko beams with occasionally constant relaxation functions,, Appl. Math. Optim., 66 (2012), 123. doi: 10.1007/s00245-012-9167-z.

[30]

N.-e. Tatar, Exponential decay for a viscoelastically damped Timoshenko beam,, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 505. doi: 10.1016/S0252-9602(13)60015-6.

[31]

N.-e. Tatar, Stabilization of a viscoelastic Timoshenko beam,, Appl. Anal.: An International Journal, 92 (2013), 27. doi: 10.1080/00036811.2011.587810.

[32]

J.-M. Wang, G.-Q. Xu and S.-P. Yung, Exponential stabilization of laminated beams with structural damping and boundary feedback controls,, SIAM J. Control Optim., 44 (2005), 1575. doi: 10.1137/040610003.

[33]

G. Q. Xu, Feedback exponential stabilization of a Timoshenko beam with both ends free,, Int. J. Control, 72 (2005), 286. doi: 10.1080/00207170500095148.

[34]

Q. Yan et al., Boundary stabilization of nonuniform Timoshenko beam with a tipload,, Chin. Ann. Math., 22 (2001), 485. doi: 10.1142/S0252959901000450.

show all references

References:
[1]

Ammar-Khodja, A. Benabdallah and J. E. M. Rivera, Energy decay for Timoshenko system of memory type,, J. Diff. Eqs., 194 (2003), 82. doi: 10.1016/S0022-0396(03)00185-2.

[2]

C. F. Beards and I. M. A. Imam, The damping of plate vibration by interfacial slip between layers,, Int. J. Mach. Tool. Des. Res., 18 (1978), 131. doi: 10.1016/0020-7357(78)90004-5.

[3]

X.-G. Cao, D.-Y. Liu and G.-Q. Xu, Easy test for stability of laminated beams with structural damping and boundary feedback controls,, J. Dynamical Control Syst., 13 (2007), 313. doi: 10.1007/s10883-007-9022-8.

[4]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping,, Math. Meth. Appl. Sci., 24 (2001), 1043. doi: 10.1002/mma.250.

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping,, Diff. Integral Eqs., 14 (2001), 85.

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems,, Nonl. Anal.: T. M. A., 68 (2008), 177. doi: 10.1016/j.na.2006.10.040.

[7]

M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation,, SIAM J. Control Optim., 42 (2003), 1310. doi: 10.1137/S0363012902408010.

[8]

M. De Lima Santos, Decay rates for solutions of a Timoshenko system with memory conditions at the boundary,, Abstr. Appl. Anal., 7 (2002), 53. doi: 10.1155/S1085337502204133.

[9]

X. S. Han and M. X. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping,, Nonl. Anal.: T. M. A., 70 (2009), 3090. doi: 10.1016/j.na.2008.04.011.

[10]

S. W. Hansen and R. Spies, Structural damping in a laminated beam due to interfacial slip,, J. Sound Vibration, 204 (1997), 183. doi: 10.1006/jsvi.1996.0913.

[11]

Z. Liu and C. Pang, Exponential stability of a viscoelastic Timoshenko beam,, Adv. Math. Sci. Appl., 8 (1998), 343.

[12]

A. Lo and N.-e. Tatar, Stabilization of a laminated beam with interfacial slip,, Electron. J. Diff. Eqs., 129 (2015), 1.

[13]

M. Medjden and N.-e. Tatar, On the wave equation with a temporal nonlocal term,, Dyn. Syst. Appl., 16 (2007), 665.

[14]

M. Medjden and N.-e. Tatar, Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel,, Appl. Math. Comput., 167 (2005), 1221. doi: 10.1016/j.amc.2004.08.035.

[15]

S. Messaoudi, General decay of solutions of a viscoelastic equation,, J. Math. Anal. Appl., 341 (2008), 1457. doi: 10.1016/j.jmaa.2007.11.048.

[16]

S. Messaoudi and M. I. Mustafa, A general result in a memory-type Timoshenko system,, Comm. Pure Appl. Anal., (2013), 957. doi: 10.3934/cpaa.2013.12.957.

[17]

S. Messaoudi and B. Said-Houari, Uniform decay in a Timoshenko-type system with past history,, J. Math. Anal. Appl., 360 (2009), 459. doi: 10.1016/j.jmaa.2009.06.064.

[18]

J. E. Munoz Rivera and F. P. Quispe Gomez, Existence and decay in non linear viscoelasticity,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 6 (2003), 1.

[19]

V. Pata, Exponential stability in linear viscoelasticity,, Quart. Appl. Math., LXIV (2006), 499. doi: 10.1090/S0033-569X-06-01010-4.

[20]

C. A. Rapaso, J. Ferreira, M. L. Santos and N. N. Castro, Exponential stabilization for the Timoshenko system with two weak dampings,, Appl. Math. Lett., 18 (2005), 535. doi: 10.1016/j.aml.2004.03.017.

[21]

J. E. M. Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems: Global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248. doi: 10.1016/S0022-247X(02)00436-5.

[22]

J. E. M. Rivera and R. Racke, Global stability for damped Timoshenko systems,, Discrete Contin. Dyn. Syst., 9 (2003), 1625. doi: 10.3934/dcds.2003.9.1625.

[23]

D. H. Shi and D. X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback,, IMA J. Math. Control Inform., 18 (2001), 395. doi: 10.1093/imamci/18.3.395.

[24]

D. H. Shi, S. H. Hou and D. X. Feng, Feedback stabilization of a Timoshenko beam with an end mass,, Int. J. Control, 69 (1998), 285. doi: 10.1080/002071798222848.

[25]

A. Soufyane and Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping,, Electron. J. Diff. Eqs., 29 (2003), 1.

[26]

N.-e. Tatar, Long time behavior for a viscoelastic problem with a positive definite kernel,, Australian J. Math. Anal. Appl., 1 (2004), 1.

[27]

N.-e. Tatar, Exponential decay for a viscoelastic problem with a singular problem,, Zeit. Angew. Math. Phys., 60 (2009), 640. doi: 10.1007/s00033-008-8030-1.

[28]

N.-e. Tatar, On a large class of kernels yielding exponential stability in viscoelasticity,, Appl. Math. Comp., 215 (2009), 2298. doi: 10.1016/j.amc.2009.08.034.

[29]

N.-e. Tatar, Viscoelastic Timoshenko beams with occasionally constant relaxation functions,, Appl. Math. Optim., 66 (2012), 123. doi: 10.1007/s00245-012-9167-z.

[30]

N.-e. Tatar, Exponential decay for a viscoelastically damped Timoshenko beam,, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 505. doi: 10.1016/S0252-9602(13)60015-6.

[31]

N.-e. Tatar, Stabilization of a viscoelastic Timoshenko beam,, Appl. Anal.: An International Journal, 92 (2013), 27. doi: 10.1080/00036811.2011.587810.

[32]

J.-M. Wang, G.-Q. Xu and S.-P. Yung, Exponential stabilization of laminated beams with structural damping and boundary feedback controls,, SIAM J. Control Optim., 44 (2005), 1575. doi: 10.1137/040610003.

[33]

G. Q. Xu, Feedback exponential stabilization of a Timoshenko beam with both ends free,, Int. J. Control, 72 (2005), 286. doi: 10.1080/00207170500095148.

[34]

Q. Yan et al., Boundary stabilization of nonuniform Timoshenko beam with a tipload,, Chin. Ann. Math., 22 (2001), 485. doi: 10.1142/S0252959901000450.

[1]

Xiu-Fang Liu, Gen-Qi Xu. Exponential stabilization of Timoshenko beam with input and output delays. Mathematical Control & Related Fields, 2016, 6 (2) : 271-292. doi: 10.3934/mcrf.2016004

[2]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the exponential stabilization of a thermo piezoelectric/piezomagnetic system. Evolution Equations & Control Theory, 2012, 1 (2) : 315-336. doi: 10.3934/eect.2012.1.315

[3]

Jeongho Ahn, David E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 1-22. doi: 10.3934/dcdsb.2009.12.1

[4]

Serge Nicaise. Internal stabilization of a Mindlin-Timoshenko model by interior feedbacks. Mathematical Control & Related Fields, 2011, 1 (3) : 331-352. doi: 10.3934/mcrf.2011.1.331

[5]

Liren Lin, I-Liang Chern. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1119-1128. doi: 10.3934/dcdsb.2014.19.1119

[6]

Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations & Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423

[7]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

[8]

Salim A. Messaoudi, Muhammad I. Mustafa. A general stability result in a memory-type Timoshenko system. Communications on Pure & Applied Analysis, 2013, 12 (2) : 957-972. doi: 10.3934/cpaa.2013.12.957

[9]

Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203

[10]

Yan-An Hwang, Yu-Hsien Liao. Reduction and dynamic approach for the multi-choice Shapley value. Journal of Industrial & Management Optimization, 2013, 9 (4) : 885-892. doi: 10.3934/jimo.2013.9.885

[11]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[12]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[13]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[14]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks & Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[15]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks & Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19

[16]

Louis Tebou. Simultaneous stabilization of a system of interacting plate and membrane. Evolution Equations & Control Theory, 2013, 2 (1) : 153-172. doi: 10.3934/eect.2013.2.153

[17]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[18]

Sergio Conti, Georg Dolzmann, Carolin Kreisbeck. Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 1-16. doi: 10.3934/dcdss.2013.6.1

[19]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[20]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]