2016, 36(11): 6307-6330. doi: 10.3934/dcds.2016074

Prescribing the Q-curvature on the sphere with conical singularities

1. 

Department of mathematics and natural sciences, American University of Ras Al Khaimah, PO Box 10021, Ras Al Khaimah, United Arab Emirates

Received  December 2015 Revised  July 2016 Published  August 2016

In this paper we investigate the problem of prescribing the $Q$-curvature, on the sphere of any dimension with prescribed conical singularities. We also give the asymptotic behaviour of the solutions that we find and we prove their uniqueness in the negative curvature case. We focus mainly on the odd dimensional case, more specifically the three dimensional sphere.
Citation: Ali Maalaoui. Prescribing the Q-curvature on the sphere with conical singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6307-6330. doi: 10.3934/dcds.2016074
References:
[1]

K. Akutagawa, G. Carron and R. Mazzeo, The Yamabe problem on stratified spaces,, Geometric and Functional Analusis, 24 (2014), 1039. doi: 10.1007/s00039-014-0298-z.

[2]

A. Bahri and J. M. Coron, The scalar curvature problem on the standard three-dimensional sphere,, J. Funct. Anal., 95 (1991), 106. doi: 10.1016/0022-1236(91)90026-2.

[3]

D. Bartolucci, F. De Marchis and A. Malchiodi, Supercritical conformal metrics on surfaces with conical singularities,, Int. Math. Res. Not., 24 (2011), 5625. doi: 10.1093/imrn/rnq285.

[4]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality,, Ann. Math., 138 (1993), 213. doi: 10.2307/2946638.

[5]

P. Billingsley, Convergence of Probability Measures,, J. Wiley and Sons, (1968).

[6]

T. Branson, Group representations arising from Lorentz conformal geometry,, J. Funct. Anal., 74 (1987), 199. doi: 10.1016/0022-1236(87)90025-5.

[7]

S. Y. A. Chang, On a fourth-order partial differential equation in conformal geometry harmonic analysis and partial differential equations,, Chicago Lectures in Math., (1999).

[8]

S.-Y. A Chang and W. Chen, A note on a class of higher order conformally covariant equations,, Discrete Contin. Dynam. Systems, 7 (2001), 275. doi: 10.3934/dcds.2001.7.275.

[9]

S. Y. A. Chang and P. Yang, Prescribing Gaussian curvature on $S^{2}$,, Acta Math., 159 (1987), 215. doi: 10.1007/BF02392560.

[10]

S. Y. A. Chang and P. Yang, The Q-curvature equation in conformal geometry, Géométrie différentielle,, physique mathématique, 322 (2008), 23.

[11]

S. Chanillo and M. K.-H. Kiessling, Surfaces with prescribed Gauss curvature,, Duke Math. J., 105 (2000), 309. doi: 10.1215/S0012-7094-00-10525-X.

[12]

A. Carlotto and A. Malchiodi, Weighted barycentric sets and singular Liouville equations on compact surfaces,, J. Funct. Anal., 262 (2012), 409. doi: 10.1016/j.jfa.2011.09.012.

[13]

A. Carlotto and A. Malchiodi, A class of existence results for the singular Liouville equation,, C. R. Math. Acad. Sci. Paris, 349 (2011), 161. doi: 10.1016/j.crma.2010.12.016.

[14]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8.

[15]

W. Chen and C. Li, Qualitative Properties of solutions to some non-linear elliptic equations in $\mathbbR^{2}$,, Duke Math. J., 71 (1993), 427. doi: 10.1215/S0012-7094-93-07117-7.

[16]

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature,, Ann. of Math., 168 (2008), 813. doi: 10.4007/annals.2008.168.813.

[17]

J. Dolbeault, M. J. Esteban and G. Tarantello, The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions,, Ann. Sc. Norm. Super. Pisa Cl. Sci., VII (2008), 313.

[18]

R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics,, Springer-Verlag, (1985). doi: 10.1007/978-1-4613-8533-2.

[19]

J. Glimm and A. Jaffe, Quantum Physics,, $2^{nd}$ ed., (1987).

[20]

C. Graham, R. Jenne, L. Mason and G. Sparling, Conformally invariant powers of the Laplacian, I: Existence,, J. London Math. Soc., 46 (1992), 557. doi: 10.1112/jlms/s2-46.3.557.

[21]

T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local $Q$-curvature equation in dimension three,, Calc. Var. Partial Differential Equations, 52 (2015), 469. doi: 10.1007/s00526-014-0718-9.

[22]

J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds,, Ann. Math., 99 (1974), 14. doi: 10.2307/1971012.

[23]

M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions,, Commun. Pure Appl. Math., 46 (1993), 27. doi: 10.1002/cpa.3160460103.

[24]

M. K.-H. Kiessling, Statistical mechanics approach to some problems in conformal geometry,, Physica A, 279 (2000), 353. doi: 10.1016/S0378-4371(99)00515-4.

[25]

M. K.-H. Kiessling, Typicality analysis for the Newtonian N-body problem on $S^2$ in the $N\to \infty$ limit,, J. Stat. Mech. Theory Exp., 01 (2011).

[26]

A. Malchiodi, Conformal metrics with constant Q-curvature,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007). doi: 10.3842/SIGMA.2007.120.

[27]

A. Malchiodi, Variational methods for singular Liouville equations,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 21 (2010), 349. doi: 10.4171/RLM/577.

[28]

A. Malchiodi and D. Ruiz, New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces,, Geometric and Functional Analysis, 21 (2011), 1196. doi: 10.1007/s00039-011-0134-7.

[29]

L. Martinazzi, Classification of solutions to the higher order Liouville's equation on $\mathbbR^{2m}$,, Math. Z., 263 (2009), 307. doi: 10.1007/s00209-008-0419-1.

[30]

J. Messer and H. Spohn, Statistical mechanics of the isothermal Lane-Emden equation,, J. Stat. Phys., 29 (1982), 561. doi: 10.1007/BF01342187.

[31]

C. B. Ndiaye, Constant T-curvature conformal metrics on 4-manifolds with boundary,, Pacific J. Math., 240 (2009), 151. doi: 10.2140/pjm.2009.240.151.

[32]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60 (2007), 67. doi: 10.1002/cpa.20153.

[33]

M. Troyanov, Prescribing curvature on compact surfaces with conical singularities,, Trans. Am. Math. Soc., 324 (1991), 793. doi: 10.1090/S0002-9947-1991-1005085-9.

[34]

Y. Wang, Curvature and Statistics,, Ph.D. Dissertation, (2013).

[35]

J. Wei and X. Xu, On conformal deformations of metrics on $S^n$,, J. Funct. Anal., 157 (1998), 292. doi: 10.1006/jfan.1998.3271.

show all references

References:
[1]

K. Akutagawa, G. Carron and R. Mazzeo, The Yamabe problem on stratified spaces,, Geometric and Functional Analusis, 24 (2014), 1039. doi: 10.1007/s00039-014-0298-z.

[2]

A. Bahri and J. M. Coron, The scalar curvature problem on the standard three-dimensional sphere,, J. Funct. Anal., 95 (1991), 106. doi: 10.1016/0022-1236(91)90026-2.

[3]

D. Bartolucci, F. De Marchis and A. Malchiodi, Supercritical conformal metrics on surfaces with conical singularities,, Int. Math. Res. Not., 24 (2011), 5625. doi: 10.1093/imrn/rnq285.

[4]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality,, Ann. Math., 138 (1993), 213. doi: 10.2307/2946638.

[5]

P. Billingsley, Convergence of Probability Measures,, J. Wiley and Sons, (1968).

[6]

T. Branson, Group representations arising from Lorentz conformal geometry,, J. Funct. Anal., 74 (1987), 199. doi: 10.1016/0022-1236(87)90025-5.

[7]

S. Y. A. Chang, On a fourth-order partial differential equation in conformal geometry harmonic analysis and partial differential equations,, Chicago Lectures in Math., (1999).

[8]

S.-Y. A Chang and W. Chen, A note on a class of higher order conformally covariant equations,, Discrete Contin. Dynam. Systems, 7 (2001), 275. doi: 10.3934/dcds.2001.7.275.

[9]

S. Y. A. Chang and P. Yang, Prescribing Gaussian curvature on $S^{2}$,, Acta Math., 159 (1987), 215. doi: 10.1007/BF02392560.

[10]

S. Y. A. Chang and P. Yang, The Q-curvature equation in conformal geometry, Géométrie différentielle,, physique mathématique, 322 (2008), 23.

[11]

S. Chanillo and M. K.-H. Kiessling, Surfaces with prescribed Gauss curvature,, Duke Math. J., 105 (2000), 309. doi: 10.1215/S0012-7094-00-10525-X.

[12]

A. Carlotto and A. Malchiodi, Weighted barycentric sets and singular Liouville equations on compact surfaces,, J. Funct. Anal., 262 (2012), 409. doi: 10.1016/j.jfa.2011.09.012.

[13]

A. Carlotto and A. Malchiodi, A class of existence results for the singular Liouville equation,, C. R. Math. Acad. Sci. Paris, 349 (2011), 161. doi: 10.1016/j.crma.2010.12.016.

[14]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8.

[15]

W. Chen and C. Li, Qualitative Properties of solutions to some non-linear elliptic equations in $\mathbbR^{2}$,, Duke Math. J., 71 (1993), 427. doi: 10.1215/S0012-7094-93-07117-7.

[16]

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature,, Ann. of Math., 168 (2008), 813. doi: 10.4007/annals.2008.168.813.

[17]

J. Dolbeault, M. J. Esteban and G. Tarantello, The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions,, Ann. Sc. Norm. Super. Pisa Cl. Sci., VII (2008), 313.

[18]

R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics,, Springer-Verlag, (1985). doi: 10.1007/978-1-4613-8533-2.

[19]

J. Glimm and A. Jaffe, Quantum Physics,, $2^{nd}$ ed., (1987).

[20]

C. Graham, R. Jenne, L. Mason and G. Sparling, Conformally invariant powers of the Laplacian, I: Existence,, J. London Math. Soc., 46 (1992), 557. doi: 10.1112/jlms/s2-46.3.557.

[21]

T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local $Q$-curvature equation in dimension three,, Calc. Var. Partial Differential Equations, 52 (2015), 469. doi: 10.1007/s00526-014-0718-9.

[22]

J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds,, Ann. Math., 99 (1974), 14. doi: 10.2307/1971012.

[23]

M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions,, Commun. Pure Appl. Math., 46 (1993), 27. doi: 10.1002/cpa.3160460103.

[24]

M. K.-H. Kiessling, Statistical mechanics approach to some problems in conformal geometry,, Physica A, 279 (2000), 353. doi: 10.1016/S0378-4371(99)00515-4.

[25]

M. K.-H. Kiessling, Typicality analysis for the Newtonian N-body problem on $S^2$ in the $N\to \infty$ limit,, J. Stat. Mech. Theory Exp., 01 (2011).

[26]

A. Malchiodi, Conformal metrics with constant Q-curvature,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007). doi: 10.3842/SIGMA.2007.120.

[27]

A. Malchiodi, Variational methods for singular Liouville equations,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 21 (2010), 349. doi: 10.4171/RLM/577.

[28]

A. Malchiodi and D. Ruiz, New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces,, Geometric and Functional Analysis, 21 (2011), 1196. doi: 10.1007/s00039-011-0134-7.

[29]

L. Martinazzi, Classification of solutions to the higher order Liouville's equation on $\mathbbR^{2m}$,, Math. Z., 263 (2009), 307. doi: 10.1007/s00209-008-0419-1.

[30]

J. Messer and H. Spohn, Statistical mechanics of the isothermal Lane-Emden equation,, J. Stat. Phys., 29 (1982), 561. doi: 10.1007/BF01342187.

[31]

C. B. Ndiaye, Constant T-curvature conformal metrics on 4-manifolds with boundary,, Pacific J. Math., 240 (2009), 151. doi: 10.2140/pjm.2009.240.151.

[32]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60 (2007), 67. doi: 10.1002/cpa.20153.

[33]

M. Troyanov, Prescribing curvature on compact surfaces with conical singularities,, Trans. Am. Math. Soc., 324 (1991), 793. doi: 10.1090/S0002-9947-1991-1005085-9.

[34]

Y. Wang, Curvature and Statistics,, Ph.D. Dissertation, (2013).

[35]

J. Wei and X. Xu, On conformal deformations of metrics on $S^n$,, J. Funct. Anal., 157 (1998), 292. doi: 10.1006/jfan.1998.3271.

[1]

Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43

[2]

Vittorio Martino. On the characteristic curvature operator. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911

[3]

Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099

[4]

Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283

[5]

Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407

[6]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[7]

Yaiza Canzani, Dmitry Jakobson, Igor Wigman. Scalar curvature and $Q$-curvature of random metrics. Electronic Research Announcements, 2010, 17: 43-56. doi: 10.3934/era.2010.17.43

[8]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[9]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[10]

Bernd Kawohl, Jiří Horák. On the geometry of the $p$-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[11]

Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453

[12]

Tanja Eisner, Rainer Nagel. Arithmetic progressions -- an operator theoretic view. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 657-667. doi: 10.3934/dcdss.2013.6.657

[13]

Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213

[14]

Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773

[15]

Ricardo J. Alonso, Irene M. Gamba. Gain of integrability for the Boltzmann collisional operator. Kinetic & Related Models, 2011, 4 (1) : 41-51. doi: 10.3934/krm.2011.4.41

[16]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[17]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[18]

Daniel Grieser. A natural differential operator on conic spaces. Conference Publications, 2011, 2011 (Special) : 568-577. doi: 10.3934/proc.2011.2011.568

[19]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[20]

Yunmei Chen, Xianqi Li, Yuyuan Ouyang, Eduardo Pasiliao. Accelerated Bregman operator splitting with backtracking. Inverse Problems & Imaging, 2017, 11 (6) : 1047-1070. doi: 10.3934/ipi.2017048

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]