2016, 36(11): 6331-6377. doi: 10.3934/dcds.2016075

Groups of asymptotic diffeomorphisms

1. 

Northeastern University, Boston, MA 02115, United States, United States

Received  October 2015 Revised  June 2016 Published  August 2016

We consider classes of diffeomorphisms of Euclidean space with partial asymptotic expansions at infinity; the remainder term lies in a weighted Sobolev space whose properties at infinity fit with the desired application. We show that two such classes of asymptotic diffeomorphisms form topological groups under composition. As such, they can be used in the study of fluid dynamics according to the approach of V. Arnold [1].
Citation: Robert McOwen, Peter Topalov. Groups of asymptotic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6331-6377. doi: 10.3934/dcds.2016075
References:
[1]

V. Arnold, Sur la geometrié differentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluids parfaits,, Ann. Inst. Fourier, 16 (1966), 319. doi: 10.5802/aif.233.

[2]

R. Bartnik, The mass of an asymptotically flat manifold,, Comm. Pure Appl. Math, 39 (1986), 661. doi: 10.1002/cpa.3160390505.

[3]

I. Bondareva and M. Shubin, Uniqueness of the solution of the Cauchy problem for the Korteweg - de Vries equation in classes of increasing functions,, Moscow Univ. Math. Bulletin, 40 (1985), 53.

[4]

I. Bondareva and M. Shubin, Equations of Korteweg-de Vries type in classes of increasing functions,, J. Soviet Math., 51 (1990), 2323. doi: 10.1007/BF01094991.

[5]

J. P. Bourguignon and H. Brezis, Remarks on the Euler equation,, J. Func. Anal., 15 (1974), 341.

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661.

[7]

M. Cantor, Perfect fluid flows over $\mathbbR^n$ with asymptotic conditions,, J. Func. Anal., 18 (1975), 73. doi: 10.1016/0022-1236(75)90030-0.

[8]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Four. Grenoble, 50 (2000), 321. doi: 10.5802/aif.1757.

[9]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. Math., 92 (1970), 102. doi: 10.2307/1970699.

[10]

H. Inci, T. Kappeler and P. Topalov, On the regularity of the composition of diffeomorphisms,, Mem. Amer. Math. Soc., 226 (2013). doi: 10.1090/S0065-9266-2013-00676-4.

[11]

T. Kappeler, P. Perry, M. Shubin and P. Topalov, Solutions of mKdV in classes of functions unbounded at infinity,, J. Geom. Anal., 18 (2008), 443. doi: 10.1007/s12220-008-9013-3.

[12]

C. Kenig, G. Ponce and L. Vega, Global solutions for the KdV equation with unbounded data,, J. Diff. Equations, 139 (1997), 339. doi: 10.1006/jdeq.1997.3297.

[13]

R. McOwen, The behavior of the Laplacian on weighted Sobolev spaces,, Comm. Pure Appl. Math., 32 (1979), 783. doi: 10.1002/cpa.3160320604.

[14]

R. McOwen, Partial Differential Equations: Methods and Applications,, 2nd ed, (2003).

[15]

R. McOwen and P. Topalov, Asymptotics in shallow water waves,, Discrete Contin. Dyn. Syst., 35 (2015), 3103. doi: 10.3934/dcds.2015.35.3103.

[16]

R. McOwen and P. Topalov, Spatial asymptotic expansions in the incompressible Euler equation,, arXiv:1606.08059., ().

[17]

A. Menikoff, The existence of unbounded solutions of the Korteweg-de Vries equation,, Comm. Pure Appl. Math., 25 (1972), 407. doi: 10.1002/cpa.3160250404.

[18]

P. Michor and D. Mumford, A zoo of diffeomorphisms groups on $\mathbbR^n$,, Ann. Glob. Anal. Geom., 44 (): 529. doi: 10.1007/s10455-013-9380-2.

[19]

G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Visaro group,, J. Geom. Phys., 24 (1998), 203. doi: 10.1016/S0393-0440(97)00010-7.

[20]

D. Montgomery, On continuity in topological groups,, Bull. Amer. Math. Soc., 42 (1936), 879. doi: 10.1090/S0002-9904-1936-06456-6.

show all references

References:
[1]

V. Arnold, Sur la geometrié differentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluids parfaits,, Ann. Inst. Fourier, 16 (1966), 319. doi: 10.5802/aif.233.

[2]

R. Bartnik, The mass of an asymptotically flat manifold,, Comm. Pure Appl. Math, 39 (1986), 661. doi: 10.1002/cpa.3160390505.

[3]

I. Bondareva and M. Shubin, Uniqueness of the solution of the Cauchy problem for the Korteweg - de Vries equation in classes of increasing functions,, Moscow Univ. Math. Bulletin, 40 (1985), 53.

[4]

I. Bondareva and M. Shubin, Equations of Korteweg-de Vries type in classes of increasing functions,, J. Soviet Math., 51 (1990), 2323. doi: 10.1007/BF01094991.

[5]

J. P. Bourguignon and H. Brezis, Remarks on the Euler equation,, J. Func. Anal., 15 (1974), 341.

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661.

[7]

M. Cantor, Perfect fluid flows over $\mathbbR^n$ with asymptotic conditions,, J. Func. Anal., 18 (1975), 73. doi: 10.1016/0022-1236(75)90030-0.

[8]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Four. Grenoble, 50 (2000), 321. doi: 10.5802/aif.1757.

[9]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. Math., 92 (1970), 102. doi: 10.2307/1970699.

[10]

H. Inci, T. Kappeler and P. Topalov, On the regularity of the composition of diffeomorphisms,, Mem. Amer. Math. Soc., 226 (2013). doi: 10.1090/S0065-9266-2013-00676-4.

[11]

T. Kappeler, P. Perry, M. Shubin and P. Topalov, Solutions of mKdV in classes of functions unbounded at infinity,, J. Geom. Anal., 18 (2008), 443. doi: 10.1007/s12220-008-9013-3.

[12]

C. Kenig, G. Ponce and L. Vega, Global solutions for the KdV equation with unbounded data,, J. Diff. Equations, 139 (1997), 339. doi: 10.1006/jdeq.1997.3297.

[13]

R. McOwen, The behavior of the Laplacian on weighted Sobolev spaces,, Comm. Pure Appl. Math., 32 (1979), 783. doi: 10.1002/cpa.3160320604.

[14]

R. McOwen, Partial Differential Equations: Methods and Applications,, 2nd ed, (2003).

[15]

R. McOwen and P. Topalov, Asymptotics in shallow water waves,, Discrete Contin. Dyn. Syst., 35 (2015), 3103. doi: 10.3934/dcds.2015.35.3103.

[16]

R. McOwen and P. Topalov, Spatial asymptotic expansions in the incompressible Euler equation,, arXiv:1606.08059., ().

[17]

A. Menikoff, The existence of unbounded solutions of the Korteweg-de Vries equation,, Comm. Pure Appl. Math., 25 (1972), 407. doi: 10.1002/cpa.3160250404.

[18]

P. Michor and D. Mumford, A zoo of diffeomorphisms groups on $\mathbbR^n$,, Ann. Glob. Anal. Geom., 44 (): 529. doi: 10.1007/s10455-013-9380-2.

[19]

G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Visaro group,, J. Geom. Phys., 24 (1998), 203. doi: 10.1016/S0393-0440(97)00010-7.

[20]

D. Montgomery, On continuity in topological groups,, Bull. Amer. Math. Soc., 42 (1936), 879. doi: 10.1090/S0002-9904-1936-06456-6.

[1]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[2]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[3]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[4]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[5]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

[6]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-48. doi: 10.3934/dcdsb.2018067

[7]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[8]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic & Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[9]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[10]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[11]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[12]

Priscila Leal da Silva, Igor Leite Freire. An equation unifying both Camassa-Holm and Novikov equations. Conference Publications, 2015, 2015 (special) : 304-311. doi: 10.3934/proc.2015.0304

[13]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[14]

Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45

[15]

Alberto Bressan, Geng Chen, Qingtian Zhang. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 25-42. doi: 10.3934/dcds.2015.35.25

[16]

David Henry. Infinite propagation speed for a two component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 597-606. doi: 10.3934/dcdsb.2009.12.597

[17]

Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011

[18]

H. A. Erbay, S. Erbay, A. Erkip. On the decoupling of the improved Boussinesq equation into two uncoupled Camassa-Holm equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3111-3122. doi: 10.3934/dcds.2017133

[19]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[20]

H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]