November  2016, 36(11): 6487-6522. doi: 10.3934/dcds.2016080

Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions

1. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

2. 

Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

3. 

School of Mathematical Sciences, Fudan University, Shanghai Key Laboratory for Contemporary Applied Mathematics, Shanghai 200433

Received  September 2015 Revised  July 2016 Published  August 2016

We consider the evolutionary Hamilton-Jacobi equation depending on the unknown function with the continuous initial condition on a connected closed manifold. Under certain assumptions on $H(x,u,p)$ with respect to $u$ and $p$, we provide an implicit variational principle. By introducing an implicitly defined solution semigroup and an admissible value set $\mathcal{C}_H$, we extend weak KAM theory to certain more general cases, in which $H$ depends on the unknown function $u$ explicitly. As an application, we show that for $0\notin \mathcal{C}_H$, as $t\rightarrow +\infty$, the viscosity solution of \begin{equation*} \begin{cases} \partial_tu(x,t)+H(x,u(x,t),\partial_xu(x,t))=0,\\ u(x,0)=\varphi(x), \end{cases} \end{equation*} diverges, otherwise for $0\in \mathcal{C}_H$, it converges to a weak KAM solution of the stationary Hamilton-Jacobi equation \begin{equation*} H(x,u(x),\partial_xu(x))=0. \end{equation*}
Citation: Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080
References:
[1]

V. I. Arnold, Geometric Methods in The Theory of Ordinary Differential Equations,, Springer-Verlag, (1983). Google Scholar

[2]

V. I. Arnold, Lectures on Partial Differential Equations,, Springer, (2004). doi: 10.1007/978-3-662-05441-3. Google Scholar

[3]

S. Aubry, The twist map, the extended Frenkel-Kontorova model and the devil's staircase,, Phys. D., 7 (1983), 240. doi: 10.1016/0167-2789(83)90129-X. Google Scholar

[4]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions I: Exact results for the ground states,, Phys. D., 8 (1983), 381. doi: 10.1016/0167-2789(83)90233-6. Google Scholar

[5]

G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi Mathématiques & Applications,, (Berlin) 17, 17 (1994). Google Scholar

[6]

G. Buttazzo, M. Giaquinta and S. Hildebrandt, One-dimensional Variational Problems, An Introduction,, (Oxford Lecture Series in Mathematics and Its Applications), (1998). Google Scholar

[7]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control,, Vol. 58, 58 (2004). Google Scholar

[8]

M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 282 (1984), 487. doi: 10.1090/S0002-9947-1984-0732102-X. Google Scholar

[9]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar

[10]

G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values,, Geom. Funct. Anal., 8 (1998), 788. doi: 10.1007/s000390050074. Google Scholar

[11]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 277 (1983), 1. doi: 10.1090/S0002-9947-1983-0690039-8. Google Scholar

[12]

A. Davini, A. Fathi, R. Iturriaga and M. Zavidovique., Convergence of the solutions of the discounted Hamilton-Jacobi equation,, Invent. Math., 105 (2016), 1. doi: 10.1007/s00222-016-0648-6. Google Scholar

[13]

A. Davini and A. Siconolfi, A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations,, SIAM J. Math. Anal., 38 (2006), 478. doi: 10.1137/050621955. Google Scholar

[14]

A. Douglis, Solutions in the large for multi-dimensional, non-linear partial differential equations of first order,, Ann. Inst. Fourier (Grenoble), 15 (1965), 1. doi: 10.5802/aif.208. Google Scholar

[15]

W. E, Aubry-Mather theory and periodic solutions of the forced Burgers equation,, Comm. Pure Appl. Math., 52 (1999), 811. doi: 10.1002/(SICI)1097-0312(199907)52:7<811::AID-CPA2>3.0.CO;2-D. Google Scholar

[16]

A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1043. doi: 10.1016/S0764-4442(97)87883-4. Google Scholar

[17]

A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik,, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267. doi: 10.1016/S0764-4442(98)80144-4. Google Scholar

[18]

A. Fathi, Weak KAM Theorem in Lagrangian Dynamics,, Preliminary Version Number 10, (2008). Google Scholar

[19]

A. Fathi and J. N. Mather, Failure of convergence of the Lax-Oleinik semi-group in the time- periodic case,, Bull. Soc. Math. France., 128 (2000), 473. Google Scholar

[20]

N. Ichihara and H. Ishii, Long-time behavior of solutions of Hamilton-Jacobi equations with convex and coercive Hamiltonians,, Arch. Ration. Mech. Anal., 194 (2009), 383. doi: 10.1007/s00205-008-0170-0. Google Scholar

[21]

J. N. Mather, Existence of quasi periodic orbits for twist homeomorphisms of the annulus,, Topology, 21 (1982), 457. doi: 10.1016/0040-9383(82)90023-4. Google Scholar

[22]

J. N. Mather, More Denjoy minimal sets for area preserving diffeomorphisms,, Comment. Math. Helv., 60 (1985), 508. doi: 10.1007/BF02567431. Google Scholar

[23]

J. N. Mather, A criterion for the non-existence of invariant circle,, Publ. Math. IHES, 63 (1986), 301. doi: 10.1007/BF02831625. Google Scholar

[24]

J. N. Mather, Modulus of continuity for Peierls's barrier,, Periodic Solutions of Hamiltonian Systems and Related Topics, 209 (1987), 177. Google Scholar

[25]

J. N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems,, Math. Z., 207 (1991), 169. doi: 10.1007/BF02571383. Google Scholar

[26]

G. Namah and J.-M. Roquejoffre, Remarks on the long time behavior of the solutions of Hamilton-Jacobi equations,, Commun. Partial Differ. Equ., 24 (1999), 883. doi: 10.1080/03605309908821451. Google Scholar

[27]

K. Wang and J. Yan, A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems,, Comm. Math. Phys., 309 (2012), 663. doi: 10.1007/s00220-011-1375-x. Google Scholar

show all references

References:
[1]

V. I. Arnold, Geometric Methods in The Theory of Ordinary Differential Equations,, Springer-Verlag, (1983). Google Scholar

[2]

V. I. Arnold, Lectures on Partial Differential Equations,, Springer, (2004). doi: 10.1007/978-3-662-05441-3. Google Scholar

[3]

S. Aubry, The twist map, the extended Frenkel-Kontorova model and the devil's staircase,, Phys. D., 7 (1983), 240. doi: 10.1016/0167-2789(83)90129-X. Google Scholar

[4]

S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions I: Exact results for the ground states,, Phys. D., 8 (1983), 381. doi: 10.1016/0167-2789(83)90233-6. Google Scholar

[5]

G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi Mathématiques & Applications,, (Berlin) 17, 17 (1994). Google Scholar

[6]

G. Buttazzo, M. Giaquinta and S. Hildebrandt, One-dimensional Variational Problems, An Introduction,, (Oxford Lecture Series in Mathematics and Its Applications), (1998). Google Scholar

[7]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control,, Vol. 58, 58 (2004). Google Scholar

[8]

M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 282 (1984), 487. doi: 10.1090/S0002-9947-1984-0732102-X. Google Scholar

[9]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar

[10]

G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values,, Geom. Funct. Anal., 8 (1998), 788. doi: 10.1007/s000390050074. Google Scholar

[11]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations,, Trans. Amer. Math. Soc., 277 (1983), 1. doi: 10.1090/S0002-9947-1983-0690039-8. Google Scholar

[12]

A. Davini, A. Fathi, R. Iturriaga and M. Zavidovique., Convergence of the solutions of the discounted Hamilton-Jacobi equation,, Invent. Math., 105 (2016), 1. doi: 10.1007/s00222-016-0648-6. Google Scholar

[13]

A. Davini and A. Siconolfi, A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations,, SIAM J. Math. Anal., 38 (2006), 478. doi: 10.1137/050621955. Google Scholar

[14]

A. Douglis, Solutions in the large for multi-dimensional, non-linear partial differential equations of first order,, Ann. Inst. Fourier (Grenoble), 15 (1965), 1. doi: 10.5802/aif.208. Google Scholar

[15]

W. E, Aubry-Mather theory and periodic solutions of the forced Burgers equation,, Comm. Pure Appl. Math., 52 (1999), 811. doi: 10.1002/(SICI)1097-0312(199907)52:7<811::AID-CPA2>3.0.CO;2-D. Google Scholar

[16]

A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1043. doi: 10.1016/S0764-4442(97)87883-4. Google Scholar

[17]

A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik,, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267. doi: 10.1016/S0764-4442(98)80144-4. Google Scholar

[18]

A. Fathi, Weak KAM Theorem in Lagrangian Dynamics,, Preliminary Version Number 10, (2008). Google Scholar

[19]

A. Fathi and J. N. Mather, Failure of convergence of the Lax-Oleinik semi-group in the time- periodic case,, Bull. Soc. Math. France., 128 (2000), 473. Google Scholar

[20]

N. Ichihara and H. Ishii, Long-time behavior of solutions of Hamilton-Jacobi equations with convex and coercive Hamiltonians,, Arch. Ration. Mech. Anal., 194 (2009), 383. doi: 10.1007/s00205-008-0170-0. Google Scholar

[21]

J. N. Mather, Existence of quasi periodic orbits for twist homeomorphisms of the annulus,, Topology, 21 (1982), 457. doi: 10.1016/0040-9383(82)90023-4. Google Scholar

[22]

J. N. Mather, More Denjoy minimal sets for area preserving diffeomorphisms,, Comment. Math. Helv., 60 (1985), 508. doi: 10.1007/BF02567431. Google Scholar

[23]

J. N. Mather, A criterion for the non-existence of invariant circle,, Publ. Math. IHES, 63 (1986), 301. doi: 10.1007/BF02831625. Google Scholar

[24]

J. N. Mather, Modulus of continuity for Peierls's barrier,, Periodic Solutions of Hamiltonian Systems and Related Topics, 209 (1987), 177. Google Scholar

[25]

J. N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems,, Math. Z., 207 (1991), 169. doi: 10.1007/BF02571383. Google Scholar

[26]

G. Namah and J.-M. Roquejoffre, Remarks on the long time behavior of the solutions of Hamilton-Jacobi equations,, Commun. Partial Differ. Equ., 24 (1999), 883. doi: 10.1080/03605309908821451. Google Scholar

[27]

K. Wang and J. Yan, A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems,, Comm. Math. Phys., 309 (2012), 663. doi: 10.1007/s00220-011-1375-x. Google Scholar

[1]

Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389

[2]

Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure & Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793

[3]

Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649

[4]

Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176

[5]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[6]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[7]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

[8]

Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647

[9]

Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167

[10]

David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205

[11]

Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331

[12]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[13]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[14]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[15]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[16]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[17]

Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223

[18]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure & Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[19]

Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : ⅰ-ⅲ. doi: 10.3934/dcdss.201805i

[20]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]