December  2016, 36(12): 7021-7028. doi: 10.3934/dcds.2016105

Geometric Lorenz flows with historic behavior

1. 

Department of Mathematics, Tokai University, 4-1-1 Kitakaname, Hiratuka Kanagawa, 259-1292, Japan

2. 

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan

3. 

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397

Received  December 2015 Revised  August 2016 Published  October 2016

We will show that, in the the geometric Lorenz flow, the set of initial states which give rise to orbits with historic behavior is residual in a trapping region.
Citation: Shin Kiriki, Ming-Chia Li, Teruhiko Soma. Geometric Lorenz flows with historic behavior. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7021-7028. doi: 10.3934/dcds.2016105
References:
[1]

V. Araujo, M. J. Pacifico, E. R. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic,, Trans. Amer. Math. Soc., 361 (2009), 2431. doi: 10.1090/S0002-9947-08-04595-9. Google Scholar

[2]

Ch. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity,, Encyclopedia of Mathematical Sciences (Mathematical Physics), 102 (2005). Google Scholar

[3]

T. N. Dowker, The mean and transitive points of homeomorphisms,, Ann. of Math., 58 (1953), 123. doi: 10.2307/1969823. Google Scholar

[4]

J. Guckenheimer, A strange, strange attractor,, in The Hopf bifurcation and its applications, (1976), 368. Google Scholar

[5]

J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59. Google Scholar

[6]

F. Hofbauer, Kneading invariants and Markov diagrams,, in Ergodic theory and related topics (Vitte, 12 (1982), 85. Google Scholar

[7]

T. Jordan, V. Naudot and T. Young, Higher order Birkhoff averages,, Dyn. Syst., 24 (2009), 299. doi: 10.1080/14689360802676269. Google Scholar

[8]

S. Kiriki and T. Soma, Takens' last problem and existence of non-trivial wandering domains,, preprint, (). Google Scholar

[9]

I. S. Labouriau and A. A. P. Rodrigues, On Takens' Last Problem: Tangencies and time averages near heteroclinic networks,, preprint, (). Google Scholar

[10]

E. N. Lorenz, Deterministic non-periodic flow,, J. Atmos. Sci., 20 (1963), 130. Google Scholar

[11]

C. A. Morales, M. J. Pacifico and E. R. Pujals, Singular hyperbolic systems,, Proc. Amer. Math. Soc., 127 (1999), 3393. doi: 10.1090/S0002-9939-99-04936-9. Google Scholar

[12]

Y. Nakano, Historic behaviour for quenched random expanding maps on the circle,, preprint, (). Google Scholar

[13]

J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Fractal dimensions and infinitely many attractors, Cambridge Studies in Advanced Mathematics, 35,, Cambridge University Press, (1993). Google Scholar

[14]

C. Robinson, Differentiability of the stable foliation for the model Lorenz equations,, Dynamical systems and turbulence, 898 (1980), 302. Google Scholar

[15]

D. Ruelle, Historical behaviour in smooth dynamical systems,, in Global Analysis of Dynamical Systems (eds. H. W. Broer et al), (2001), 63. Google Scholar

[16]

F. Takens, Heteroclinic attractors: Time averages and moduli of topological stability,, Bol. Soc. Bras. Mat., 25 (1994), 107. doi: 10.1007/BF01232938. Google Scholar

[17]

F. Takens, Orbits with historic behaviour, or non-existence of averages,, Nonlinearity, 21 (2008). doi: 10.1088/0951-7715/21/3/T02. Google Scholar

[18]

W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comput. Math., 2 (2002), 53. doi: 10.1007/s002080010018. Google Scholar

[19]

R. Williams, The structure of Lorenz attractors,, Turbulence Seminar (Univ. Calif., 615 (1977), 94. Google Scholar

[20]

R. Williams, The structure of Lorenz attractors,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 73. Google Scholar

show all references

References:
[1]

V. Araujo, M. J. Pacifico, E. R. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic,, Trans. Amer. Math. Soc., 361 (2009), 2431. doi: 10.1090/S0002-9947-08-04595-9. Google Scholar

[2]

Ch. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity,, Encyclopedia of Mathematical Sciences (Mathematical Physics), 102 (2005). Google Scholar

[3]

T. N. Dowker, The mean and transitive points of homeomorphisms,, Ann. of Math., 58 (1953), 123. doi: 10.2307/1969823. Google Scholar

[4]

J. Guckenheimer, A strange, strange attractor,, in The Hopf bifurcation and its applications, (1976), 368. Google Scholar

[5]

J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59. Google Scholar

[6]

F. Hofbauer, Kneading invariants and Markov diagrams,, in Ergodic theory and related topics (Vitte, 12 (1982), 85. Google Scholar

[7]

T. Jordan, V. Naudot and T. Young, Higher order Birkhoff averages,, Dyn. Syst., 24 (2009), 299. doi: 10.1080/14689360802676269. Google Scholar

[8]

S. Kiriki and T. Soma, Takens' last problem and existence of non-trivial wandering domains,, preprint, (). Google Scholar

[9]

I. S. Labouriau and A. A. P. Rodrigues, On Takens' Last Problem: Tangencies and time averages near heteroclinic networks,, preprint, (). Google Scholar

[10]

E. N. Lorenz, Deterministic non-periodic flow,, J. Atmos. Sci., 20 (1963), 130. Google Scholar

[11]

C. A. Morales, M. J. Pacifico and E. R. Pujals, Singular hyperbolic systems,, Proc. Amer. Math. Soc., 127 (1999), 3393. doi: 10.1090/S0002-9939-99-04936-9. Google Scholar

[12]

Y. Nakano, Historic behaviour for quenched random expanding maps on the circle,, preprint, (). Google Scholar

[13]

J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Fractal dimensions and infinitely many attractors, Cambridge Studies in Advanced Mathematics, 35,, Cambridge University Press, (1993). Google Scholar

[14]

C. Robinson, Differentiability of the stable foliation for the model Lorenz equations,, Dynamical systems and turbulence, 898 (1980), 302. Google Scholar

[15]

D. Ruelle, Historical behaviour in smooth dynamical systems,, in Global Analysis of Dynamical Systems (eds. H. W. Broer et al), (2001), 63. Google Scholar

[16]

F. Takens, Heteroclinic attractors: Time averages and moduli of topological stability,, Bol. Soc. Bras. Mat., 25 (1994), 107. doi: 10.1007/BF01232938. Google Scholar

[17]

F. Takens, Orbits with historic behaviour, or non-existence of averages,, Nonlinearity, 21 (2008). doi: 10.1088/0951-7715/21/3/T02. Google Scholar

[18]

W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comput. Math., 2 (2002), 53. doi: 10.1007/s002080010018. Google Scholar

[19]

R. Williams, The structure of Lorenz attractors,, Turbulence Seminar (Univ. Calif., 615 (1977), 94. Google Scholar

[20]

R. Williams, The structure of Lorenz attractors,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 73. Google Scholar

[1]

Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699

[2]

Fuchen Zhang, Xiaofeng Liao, Guangyun Zhang, Chunlai Mu, Min Xiao, Ping Zhou. Dynamical behaviors of a generalized Lorenz family. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3707-3720. doi: 10.3934/dcdsb.2017184

[3]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[4]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[5]

Sergey Gonchenko, Ivan Ovsyannikov. Homoclinic tangencies to resonant saddles and discrete Lorenz attractors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 273-288. doi: 10.3934/dcdss.2017013

[6]

Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979

[7]

Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019210

[8]

Nuno Franco, Luís Silva. Genus and braid index associated to sequences of renormalizable Lorenz maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 565-586. doi: 10.3934/dcds.2012.32.565

[9]

Kody Law, Abhishek Shukla, Andrew Stuart. Analysis of the 3DVAR filter for the partially observed Lorenz'63 model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1061-1078. doi: 10.3934/dcds.2014.34.1061

[10]

Youngna Choi. Attractors from one dimensional Lorenz-like maps. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 715-730. doi: 10.3934/dcds.2004.11.715

[11]

Fuchen Zhang, Chunlai Mu, Shouming Zhou, Pan Zheng. New results of the ultimate bound on the trajectories of the family of the Lorenz systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1261-1276. doi: 10.3934/dcdsb.2015.20.1261

[12]

María Anguiano, Tomás Caraballo. Asymptotic behaviour of a non-autonomous Lorenz-84 system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3901-3920. doi: 10.3934/dcds.2014.34.3901

[13]

Jaume Llibre, Ernesto Pérez-Chavela. Zero-Hopf bifurcation for a class of Lorenz-type systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1731-1736. doi: 10.3934/dcdsb.2014.19.1731

[14]

Xinfu Chen. Lorenz equations part II: "randomly" rotated homoclinic orbits and chaotic trajectories. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 121-140. doi: 10.3934/dcds.1996.2.121

[15]

Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013

[16]

Karla Díaz-Ordaz. Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 159-176. doi: 10.3934/dcds.2006.15.159

[17]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[18]

Cuncai Hua, Guanrong Chen, Qunhong Li, Juhong Ge. Converting a general 3-D autonomous quadratic system to an extended Lorenz-type system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 475-488. doi: 10.3934/dcdsb.2011.16.475

[19]

Hartmut Pecher. Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2193-2204. doi: 10.3934/dcds.2016.36.2193

[20]

G. A. Leonov. Generalized Lorenz Equations for Acoustic-Gravity Waves in the Atmosphere. Attractors Dimension, Convergence and Homoclinic Trajectories. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2253-2267. doi: 10.3934/cpaa.2017111

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]