March  2017, 37(3): 1183-1200. doi: 10.3934/dcds.2017049

Ergodic properties of folding maps on spheres

1. 

University of Toronto, Department of Mathematics, 40 St. George St., Room 6290, Toronto, ON M5S 2E4, Canada

2. 

University of Chicago, Department of Mathematics, 5734 S. University Avenue, Room 208C, Chicago, IL 60637, USA

* Corresponding author: A. Burchard

Received  May 2016 Revised  November 2016 Published  December 2016

We consider the trajectories of points on $ \mathbb{S}^{d-1} $ under sequences of certain folding maps associated with reflections. The main result characterizes collections of folding maps that produce dense trajectories. The minimal number of maps in such a collection is d+1.

Citation: Almut Burchard, Gregory R. Chambers, Anne Dranovski. Ergodic properties of folding maps on spheres. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1183-1200. doi: 10.3934/dcds.2017049
References:
[1]

A. V. AhoM. R. Garey and J. D. Ullman, The transitive reduction of a directed graph, SIAM J. Comput., 1 (1972), 131-137. doi: 10.1137/0201008. Google Scholar

[2]

G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, 1999. doi: 10.1017/CBO9781107325937. Google Scholar

[3]

A. Baernstein Ⅱ and B. A. Taylor, Spherical rearrangements, subharmonic functions, and *-functions in n-space, Duke Math. J., 43 (1976), 245-268. doi: 10.1215/S0012-7094-76-04322-2. Google Scholar

[4]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2), 138 (1993), 213-242. doi: 10.2307/2946638. Google Scholar

[5]

Y. Benyamini, Two-point symmetrization, the isoperimetric inequality on the sphere, and some applications, in Texas Functional Analysis Seminar 1983-1984, Longhorn Notes, University of Texas Press, Austin, (1984), 53-76 Google Scholar

[6]

F. Brock and A. Yu. Solynin, An approach to symmetrization via polarization, Trans. Amer. Math. Soc., 352 (2000), 1759-1796. doi: 10.1090/S0002-9947-99-02558-1. Google Scholar

[7]

A. Burchard, Rate of convergence of random polarizations, preprint, arXiv: 1108.5500, 2011.Google Scholar

[8]

A. Burchard and M. Fortier, Random polarizations, Adv. Math., 234 (2013), 550-573. doi: 10.1016/j.aim.2012.10.010. Google Scholar

[9]

A. Burchard and M. Schmuckenschläger, Comparison theorems for exit times, Geom. Funct. Anal., 11 (2001), 651-692. doi: 10.1007/PL00001681. Google Scholar

[10]

H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math. (2), 35 (1934), 588-621. doi: 10.2307/1968753. Google Scholar

[11]

J. De Keyser and J. Van Schaftingen, Approximation of symmetrizations by Markov processes, Indiana Univ. Math. J. to appear (2016); preprint, arXiv: 1508.00464Google Scholar

[12]

P. Diaconis and M. Shahshahani, Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Gebiete, 57 (1981), 159-179. doi: 10.1007/BF00535487. Google Scholar

[13]

J. D. Dixon, The probability of generating the symmetric group, Math. Z., 110 (1969), 199-205. doi: 10.1007/BF01110210. Google Scholar

[14]

H. G. Eggleston, Convexity Cambridge Tracts in Mathematics and Mathematical Physics, No. 47, Cambridge University Press, New York, 1958. Google Scholar

[15]

M. Einsiedler and T. Ward, Ergodic Theory, with a View towards Number Theory Graduate Texts in Mathematics, No. 259, Springer Verlag, London, 2011. doi: 10.1007/978-0-85729-021-2. Google Scholar

[16]

A. A. Felikson, Spherical simplexes that generate discrete reflection groups, Mat. Sb. , 195 (2004), 127-142; translation in Sb. Math. , 195 (2004), 585-598, arXiv: math.MG/0212244. doi: 10.1070/SM2004v195n04ABEH000816. Google Scholar

[17]

A. Goetz, Dynamics of piecewise isometries, Illinois J. Math., 44 (2000), 465-478. Google Scholar

[18]

D. A. Klain, Steiner symmetrization using a finite set of directions, Adv. Appl. Math., 48 (2012), 340-353. doi: 10.1016/j.aam.2011.09.004. Google Scholar

[19]

B. Klartag, Rate of convergence of geometric symmetrizations, Geom. Funct. Anal., 14 (2004), 1322-1338. doi: 10.1007/s00039-004-0493-4. Google Scholar

[20]

N. Levitt and H. J. Sussmann, On controllability by means of two vector fields, SIAM J. Control, 13 (1975), 1271-1281. doi: 10.1137/0313079. Google Scholar

[21]

D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. of Math. (2), 44 (1943), 454-470. doi: 10.2307/1968975. Google Scholar

[22]

C. Morpurgo, Sharp inequalities for functional integrals and traces of conformally invariant operators, Duke Math. J., 114 (2002), 477-553. doi: 10.1215/S0012-7094-02-11433-1. Google Scholar

[23]

Y. Peres and P. Sousi, An isoperimetric inequality for the Wiener sausage, Geom. Funct. Anal., 22 (2012), 1000-1014. doi: 10.1007/s00039-012-0184-5. Google Scholar

[24]

U. Porod, The cut-off phenomenon for random reflections, Ann. Probab., 24 (1996), 74-96. doi: 10.1214/aop/1042644708. Google Scholar

[25]

J. S. Rosenthal, Random rotations: Characters and random walks on SO(N), Ann. Probab., 22 (1994), 398-423. doi: 10.1214/aop/1176988864. Google Scholar

[26]

F. Silva Leite and P. Crouch, Closed forms for the exponential mapping on matrix Lie groups based on Putzer's method, J. Math. Phys., 40 (1999), 3561-3568. doi: 10.1063/1.532908. Google Scholar

[27]

S. R. S. Varadhan, Probability Theory Courant Lecture Notes in Mathematics, vol. 7, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001. doi: 10.1090/cln/007. Google Scholar

show all references

References:
[1]

A. V. AhoM. R. Garey and J. D. Ullman, The transitive reduction of a directed graph, SIAM J. Comput., 1 (1972), 131-137. doi: 10.1137/0201008. Google Scholar

[2]

G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, 1999. doi: 10.1017/CBO9781107325937. Google Scholar

[3]

A. Baernstein Ⅱ and B. A. Taylor, Spherical rearrangements, subharmonic functions, and *-functions in n-space, Duke Math. J., 43 (1976), 245-268. doi: 10.1215/S0012-7094-76-04322-2. Google Scholar

[4]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2), 138 (1993), 213-242. doi: 10.2307/2946638. Google Scholar

[5]

Y. Benyamini, Two-point symmetrization, the isoperimetric inequality on the sphere, and some applications, in Texas Functional Analysis Seminar 1983-1984, Longhorn Notes, University of Texas Press, Austin, (1984), 53-76 Google Scholar

[6]

F. Brock and A. Yu. Solynin, An approach to symmetrization via polarization, Trans. Amer. Math. Soc., 352 (2000), 1759-1796. doi: 10.1090/S0002-9947-99-02558-1. Google Scholar

[7]

A. Burchard, Rate of convergence of random polarizations, preprint, arXiv: 1108.5500, 2011.Google Scholar

[8]

A. Burchard and M. Fortier, Random polarizations, Adv. Math., 234 (2013), 550-573. doi: 10.1016/j.aim.2012.10.010. Google Scholar

[9]

A. Burchard and M. Schmuckenschläger, Comparison theorems for exit times, Geom. Funct. Anal., 11 (2001), 651-692. doi: 10.1007/PL00001681. Google Scholar

[10]

H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math. (2), 35 (1934), 588-621. doi: 10.2307/1968753. Google Scholar

[11]

J. De Keyser and J. Van Schaftingen, Approximation of symmetrizations by Markov processes, Indiana Univ. Math. J. to appear (2016); preprint, arXiv: 1508.00464Google Scholar

[12]

P. Diaconis and M. Shahshahani, Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Gebiete, 57 (1981), 159-179. doi: 10.1007/BF00535487. Google Scholar

[13]

J. D. Dixon, The probability of generating the symmetric group, Math. Z., 110 (1969), 199-205. doi: 10.1007/BF01110210. Google Scholar

[14]

H. G. Eggleston, Convexity Cambridge Tracts in Mathematics and Mathematical Physics, No. 47, Cambridge University Press, New York, 1958. Google Scholar

[15]

M. Einsiedler and T. Ward, Ergodic Theory, with a View towards Number Theory Graduate Texts in Mathematics, No. 259, Springer Verlag, London, 2011. doi: 10.1007/978-0-85729-021-2. Google Scholar

[16]

A. A. Felikson, Spherical simplexes that generate discrete reflection groups, Mat. Sb. , 195 (2004), 127-142; translation in Sb. Math. , 195 (2004), 585-598, arXiv: math.MG/0212244. doi: 10.1070/SM2004v195n04ABEH000816. Google Scholar

[17]

A. Goetz, Dynamics of piecewise isometries, Illinois J. Math., 44 (2000), 465-478. Google Scholar

[18]

D. A. Klain, Steiner symmetrization using a finite set of directions, Adv. Appl. Math., 48 (2012), 340-353. doi: 10.1016/j.aam.2011.09.004. Google Scholar

[19]

B. Klartag, Rate of convergence of geometric symmetrizations, Geom. Funct. Anal., 14 (2004), 1322-1338. doi: 10.1007/s00039-004-0493-4. Google Scholar

[20]

N. Levitt and H. J. Sussmann, On controllability by means of two vector fields, SIAM J. Control, 13 (1975), 1271-1281. doi: 10.1137/0313079. Google Scholar

[21]

D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. of Math. (2), 44 (1943), 454-470. doi: 10.2307/1968975. Google Scholar

[22]

C. Morpurgo, Sharp inequalities for functional integrals and traces of conformally invariant operators, Duke Math. J., 114 (2002), 477-553. doi: 10.1215/S0012-7094-02-11433-1. Google Scholar

[23]

Y. Peres and P. Sousi, An isoperimetric inequality for the Wiener sausage, Geom. Funct. Anal., 22 (2012), 1000-1014. doi: 10.1007/s00039-012-0184-5. Google Scholar

[24]

U. Porod, The cut-off phenomenon for random reflections, Ann. Probab., 24 (1996), 74-96. doi: 10.1214/aop/1042644708. Google Scholar

[25]

J. S. Rosenthal, Random rotations: Characters and random walks on SO(N), Ann. Probab., 22 (1994), 398-423. doi: 10.1214/aop/1176988864. Google Scholar

[26]

F. Silva Leite and P. Crouch, Closed forms for the exponential mapping on matrix Lie groups based on Putzer's method, J. Math. Phys., 40 (1999), 3561-3568. doi: 10.1063/1.532908. Google Scholar

[27]

S. R. S. Varadhan, Probability Theory Courant Lecture Notes in Mathematics, vol. 7, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001. doi: 10.1090/cln/007. Google Scholar

[1]

Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239

[2]

Wen-Chiao Cheng. Two-point pre-image entropy. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 107-119. doi: 10.3934/dcds.2007.17.107

[3]

Feliz Minhós, A. I. Santos. Higher order two-point boundary value problems with asymmetric growth. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 127-137. doi: 10.3934/dcdss.2008.1.127

[4]

Wenming Zou. Multiple solutions results for two-point boundary value problem with resonance. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 485-496. doi: 10.3934/dcds.1998.4.485

[5]

Jon Chaika, Rodrigo Treviño. Logarithmic laws and unique ergodicity. Journal of Modern Dynamics, 2017, 11: 563-588. doi: 10.3934/jmd.2017022

[6]

Xiankun Ren. Periodic measures are dense in invariant measures for residually finite amenable group actions with specification. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1657-1667. doi: 10.3934/dcds.2018068

[7]

Charles Pugh, Michael Shub, Alexander Starkov. Unique ergodicity, stable ergodicity, and the Mautner phenomenon for diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 845-855. doi: 10.3934/dcds.2006.14.845

[8]

Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881

[9]

Henk Bruin, Gregory Clack. Inducing and unique ergodicity of double rotations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4133-4147. doi: 10.3934/dcds.2012.32.4133

[10]

Jerry L. Bona, Hongqiu Chen, Shu-Ming Sun, Bing-Yu Zhang. Comparison of quarter-plane and two-point boundary value problems: The KdV-equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 465-495. doi: 10.3934/dcdsb.2007.7.465

[11]

Xiao-Yu Zhang, Qing Fang. A sixth order numerical method for a class of nonlinear two-point boundary value problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 31-43. doi: 10.3934/naco.2012.2.31

[12]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[13]

Jerry Bona, Hongqiu Chen, Shu Ming Sun, B.-Y. Zhang. Comparison of quarter-plane and two-point boundary value problems: the BBM-equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 921-940. doi: 10.3934/dcds.2005.13.921

[14]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence, Part 1: Isotropic turbulence. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 155-168. doi: 10.3934/dcdss.2011.4.155

[15]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence. Part 2: Inhomogeneous cases. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 227-241. doi: 10.3934/dcds.2010.28.227

[16]

Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385

[17]

George W. Patrick, Tyler Helmuth. Two rolling disks or spheres. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 129-140. doi: 10.3934/dcdss.2010.3.129

[18]

Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451

[19]

Maxim Sølund Kirsebom. Extreme value theory for random walks on homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4689-4717. doi: 10.3934/dcds.2014.34.4689

[20]

Vladimir Anashin, Andrei Khrennikov, Ekaterina Yurova. Ergodicity criteria for non-expanding transformations of 2-adic spheres. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 367-377. doi: 10.3934/dcds.2014.34.367

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (13)
  • Cited by (0)

[Back to Top]