March 2017, 37(3): 1201-1226. doi: 10.3934/dcds.2017050

Strichartz estimates for charge transfer models

Department of Mathematics, The University of Chicago, 5734 South University Avenue, Chicago, IL 60615, USA

Received  October 2015 Revised  November 2016 Published  December 2016

In this note, we prove Strichartz estimates for scattering states of scalar charge transfer models in $\mathbb{R}^{3}$. Following the idea of Strichartz estimates based on [3,10], we also show that the energy of the whole evolution is bounded independently of time without using the phase space method, as for example, in [5]. One can easily generalize our arguments to $\mathbb{R}^{n}$ for $n≥q3$. We also discuss the extension of these results to matrix charge transfer models in $\mathbb{R}^{3}$.

Citation: Gong Chen. Strichartz estimates for charge transfer models. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1201-1226. doi: 10.3934/dcds.2017050
References:
[1]

K. Cai, Fine properties of charge transfer models, preprint, arXiv: math/0311048.

[2]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), 1110-1145. doi: 10.1002/cpa.1018.

[3]

S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non-textendashtrapping potential, J. Differential Equations, 256 (2014), 1395-1466. doi: 10.1016/j.jde.2013.11.002.

[4]

M. B. Erdogan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: Ⅱ, J. Anal. Math., 99 (2006), 199-248. doi: 10.1007/BF02789446.

[5]

J. M. Graf, Phase space analysis of the charge transfer model, Helv. Physica Acta, 63 (1990), 107-138.

[6]

J.-L. JourneA. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604. doi: 10.1002/cpa.3160440504.

[7]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. doi: 10.1353/ajm.1998.0039.

[8]

L. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations Universitext. Springer, New York, 2009. doi: 978-0-387-84898-3.

[9]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513. doi: 10.1007/s00222-003-0325-4.

[10]

I. RodnianskiW. Schlag and A. Soffer, Dispersive analysis of charge transfer models, Comm. Pure Appl. Math., 58 (2005), 149-216. doi: 10.1002/cpa.20066.

[11]

W. Schlag, Dispersive estimates for Schrödinger operators: A survey, in Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud. , (eds. J. Bourgain, C. Kenig and S. Klainerman), Princeton Univ. Press, 163 (2007), 255-285.

[12]

K. Yajima, The Wk, p-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551-581. doi: 10.2969/jmsj/04730551.

[13]

K. Yajima, A multichannel scattering theory for some time dependent Hamiltonians, charge transfer problem, Comm. Math. Phys., 75 (1980), 153-178. doi: 10.1007/BF01222515.

show all references

References:
[1]

K. Cai, Fine properties of charge transfer models, preprint, arXiv: math/0311048.

[2]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), 1110-1145. doi: 10.1002/cpa.1018.

[3]

S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non-textendashtrapping potential, J. Differential Equations, 256 (2014), 1395-1466. doi: 10.1016/j.jde.2013.11.002.

[4]

M. B. Erdogan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: Ⅱ, J. Anal. Math., 99 (2006), 199-248. doi: 10.1007/BF02789446.

[5]

J. M. Graf, Phase space analysis of the charge transfer model, Helv. Physica Acta, 63 (1990), 107-138.

[6]

J.-L. JourneA. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604. doi: 10.1002/cpa.3160440504.

[7]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. doi: 10.1353/ajm.1998.0039.

[8]

L. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations Universitext. Springer, New York, 2009. doi: 978-0-387-84898-3.

[9]

I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513. doi: 10.1007/s00222-003-0325-4.

[10]

I. RodnianskiW. Schlag and A. Soffer, Dispersive analysis of charge transfer models, Comm. Pure Appl. Math., 58 (2005), 149-216. doi: 10.1002/cpa.20066.

[11]

W. Schlag, Dispersive estimates for Schrödinger operators: A survey, in Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud. , (eds. J. Bourgain, C. Kenig and S. Klainerman), Princeton Univ. Press, 163 (2007), 255-285.

[12]

K. Yajima, The Wk, p-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551-581. doi: 10.2969/jmsj/04730551.

[13]

K. Yajima, A multichannel scattering theory for some time dependent Hamiltonians, charge transfer problem, Comm. Math. Phys., 75 (1980), 153-178. doi: 10.1007/BF01222515.

[1]

Joseph A. Biello, Peter R. Kramer, Yuri Lvov. Stages of energy transfer in the FPU model. Conference Publications, 2003, 2003 (Special) : 113-122. doi: 10.3934/proc.2003.2003.113

[2]

Jin-Cheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1723-1752. doi: 10.3934/cpaa.2012.11.1723

[3]

Robert Schippa. Generalized inhomogeneous Strichartz estimates. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3387-3410. doi: 10.3934/dcds.2017143

[4]

Silvia Caprino, Carlo Marchioro. On the plasma-charge model. Kinetic & Related Models, 2010, 3 (2) : 241-254. doi: 10.3934/krm.2010.3.241

[5]

Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253

[6]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[7]

YunKyong Hyon, James E. Fonseca, Bob Eisenberg, Chun Liu. Energy variational approach to study charge inversion (layering) near charged walls. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2725-2743. doi: 10.3934/dcdsb.2012.17.2725

[8]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[9]

Vladimir Georgiev, Atanas Stefanov, Mirko Tarulli. Smoothing-Strichartz estimates for the Schrodinger equation with small magnetic potential. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 771-786. doi: 10.3934/dcds.2007.17.771

[10]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[11]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[12]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[13]

Francesco Piazza, Yves-Henri Sanejouand. Breather-mediated energy transfer in proteins. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1247-1266. doi: 10.3934/dcdss.2011.4.1247

[14]

Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177

[15]

Quoc T. Luu, Paul DuChateau. The relative biologic effectiveness versus linear energy transfer curve as an output-input relation for linear cellular systems. Mathematical Biosciences & Engineering, 2009, 6 (3) : 591-602. doi: 10.3934/mbe.2009.6.591

[16]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[17]

Annegret Glitzky. Energy estimates for electro-reaction-diffusion systems with partly fast kinetics. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 159-174. doi: 10.3934/dcds.2009.25.159

[18]

Dorina Mitrea, Irina Mitrea, Marius Mitrea, Lixin Yan. Coercive energy estimates for differential forms in semi-convex domains. Communications on Pure & Applied Analysis, 2010, 9 (4) : 987-1010. doi: 10.3934/cpaa.2010.9.987

[19]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[20]

Silvia Caprino, Carlo Marchioro. On a charge interacting with a plasma of unbounded mass. Kinetic & Related Models, 2011, 4 (1) : 215-226. doi: 10.3934/krm.2011.4.215

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (6)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]