• Previous Article
    A leading term for the velocity of stationary viscous incompressible flow around a rigid body performing a rotation and a translation
  • DCDS Home
  • This Issue
  • Next Article
    Multiple periodic solutions of Hamiltonian systems confined in a box
2017, 37(3): 1411-1424. doi: 10.3934/dcds.2017058

Minimal subshifts of arbitrary mean topological dimension

Department of Mathematics, Nanjing University, Nanjing 210093, China

* Corresponding author: Dou Dou

Received  May 2016 Revised  August 2016 Published  December 2016

Let $G$ be a countable infinite amenable group and $P$ be a polyhedron. We give a construction of minimal subshifts of $P^G$ with arbitrary mean topological dimension less than $\dim P$.

Citation: Dou Dou. Minimal subshifts of arbitrary mean topological dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1411-1424. doi: 10.3934/dcds.2017058
References:
[1]

J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies 153, Elsevier Science Publishers, Amsterdam, 1988.

[2]

M. Coornaert, Topological Dimension and Dynamical Systems, Universitext, Springer, 2015. Translation from the French language edition: Dimension topologique et systémes dynamiques by M. Coornaert, Cours spécialisés 14, Société Mathématique de France, Paris, 2005. doi: 10.1007/978-3-319-19794-4.

[3]

M. Coornaert, F. Krieger, Mean topological dimension for actions of discrete amenable groups, Discrete Continuous Dynam. Systems -A, 13 (2005), 779-793. doi: 10.3934/dcds.2005.13.779.

[4]

T. Downarowicz, D. Huczek and G. Zhang, Tilings of amenable groups, preprint, arXiv:1502.02413v1.

[5]

M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps, Part I, Math. Phys. Anal. Geom., 2 (1999), 323-415. doi: 10.1023/A:1009841100168.

[6]

Y. Gutman, Embedding $\mathbb{Z}^k$-actions in cubical shifts and $\mathbb{Z}^k$-symbolic extensions, Ergod. Th. Dynam. Sys., 31 (2011), 383-403. doi: 10.1017/S0143385709001096.

[7]

Y. Gutman, Mean dimension and Jaworski-type theorems, Proceedings of the London Mathematical Society, 111 (2015), 831-850. doi: 10.1112/plms/pdv043.

[8]

Y. Gutman, Embedding topological dynamical systems with periodic points in cubical shifts Ergod. Th. Dynam. Sys. (2015). doi: 10.1017/etds.2015.40.

[9]

Y. Gutman, E. Lindenstrauss and M. Tsukamoto, Mean dimension of $\mathbb{Z}^k$-actions, preprint, arXiv:1510.01605v1.

[10]

Y. Gutman, M. Tsukamoto, Mean dimension and a sharp embedding theorem: Extensions of aperiodic subshifts, Ergod. Th. Dynam. Sys., 34 (2014), 1888-1896. doi: 10.1017/etds.2013.30.

[11]

F. Krieger, Groupes moyennables, dimension topologique moyenne et sous-décalages, Geom. Dedicata, 122 (2006), 15-31. doi: 10.1007/s10711-006-9071-2.

[12]

F. Krieger, Minimal systems of arbitrary large mean topological dimension, Israel J. Math., 172 (2009), 425-444. doi: 10.1007/s11856-009-0081-2.

[13]

E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math., 89 (1999), 227-262.

[14]

E. Lindenstrauss, M. Tsukamoto, Mean dimension and an embedding problem: An example, Israel J. Math., 199 (2014), 573-584. doi: 10.1007/s11856-013-0040-9.

[15]

E. Lindenstrauss, B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24. doi: 10.1007/BF02810577.

[16]

D. S. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48 (1987), 1-141. doi: 10.1007/BF02790325.

[17]

B. Weiss, Actions of amenable groups, in Topics in Dynamics and Ergodic Theory, 226-262.London Math. Soc. Lecture Note Ser., 310, Cambridge Univ. Press, Cambridge, 2003. doi: 10.1017/CBO9780511546716.012.

[18]

S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete, 67 (1984), 95-107. doi: 10.1007/BF00534085.

show all references

References:
[1]

J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies 153, Elsevier Science Publishers, Amsterdam, 1988.

[2]

M. Coornaert, Topological Dimension and Dynamical Systems, Universitext, Springer, 2015. Translation from the French language edition: Dimension topologique et systémes dynamiques by M. Coornaert, Cours spécialisés 14, Société Mathématique de France, Paris, 2005. doi: 10.1007/978-3-319-19794-4.

[3]

M. Coornaert, F. Krieger, Mean topological dimension for actions of discrete amenable groups, Discrete Continuous Dynam. Systems -A, 13 (2005), 779-793. doi: 10.3934/dcds.2005.13.779.

[4]

T. Downarowicz, D. Huczek and G. Zhang, Tilings of amenable groups, preprint, arXiv:1502.02413v1.

[5]

M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps, Part I, Math. Phys. Anal. Geom., 2 (1999), 323-415. doi: 10.1023/A:1009841100168.

[6]

Y. Gutman, Embedding $\mathbb{Z}^k$-actions in cubical shifts and $\mathbb{Z}^k$-symbolic extensions, Ergod. Th. Dynam. Sys., 31 (2011), 383-403. doi: 10.1017/S0143385709001096.

[7]

Y. Gutman, Mean dimension and Jaworski-type theorems, Proceedings of the London Mathematical Society, 111 (2015), 831-850. doi: 10.1112/plms/pdv043.

[8]

Y. Gutman, Embedding topological dynamical systems with periodic points in cubical shifts Ergod. Th. Dynam. Sys. (2015). doi: 10.1017/etds.2015.40.

[9]

Y. Gutman, E. Lindenstrauss and M. Tsukamoto, Mean dimension of $\mathbb{Z}^k$-actions, preprint, arXiv:1510.01605v1.

[10]

Y. Gutman, M. Tsukamoto, Mean dimension and a sharp embedding theorem: Extensions of aperiodic subshifts, Ergod. Th. Dynam. Sys., 34 (2014), 1888-1896. doi: 10.1017/etds.2013.30.

[11]

F. Krieger, Groupes moyennables, dimension topologique moyenne et sous-décalages, Geom. Dedicata, 122 (2006), 15-31. doi: 10.1007/s10711-006-9071-2.

[12]

F. Krieger, Minimal systems of arbitrary large mean topological dimension, Israel J. Math., 172 (2009), 425-444. doi: 10.1007/s11856-009-0081-2.

[13]

E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math., 89 (1999), 227-262.

[14]

E. Lindenstrauss, M. Tsukamoto, Mean dimension and an embedding problem: An example, Israel J. Math., 199 (2014), 573-584. doi: 10.1007/s11856-013-0040-9.

[15]

E. Lindenstrauss, B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24. doi: 10.1007/BF02810577.

[16]

D. S. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48 (1987), 1-141. doi: 10.1007/BF02790325.

[17]

B. Weiss, Actions of amenable groups, in Topics in Dynamics and Ergodic Theory, 226-262.London Math. Soc. Lecture Note Ser., 310, Cambridge Univ. Press, Cambridge, 2003. doi: 10.1017/CBO9780511546716.012.

[18]

S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete, 67 (1984), 95-107. doi: 10.1007/BF00534085.

[1]

Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779

[2]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[3]

Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47.

[4]

Xiankun Ren. Periodic measures are dense in invariant measures for residually finite amenable group actions with specification. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1657-1667. doi: 10.3934/dcds.2018068

[5]

Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779

[6]

A. Crannell. A chaotic, non-mixing subshift. Conference Publications, 1998, 1998 (Special) : 195-202. doi: 10.3934/proc.1998.1998.195

[7]

Elon Lindenstrauss. Pointwise theorems for amenable groups. Electronic Research Announcements, 1999, 5: 82-90.

[8]

Laura Cremaschi, Carlo Mantegazza. Short-time existence of the second order renormalization group flow in dimension three. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5787-5798. doi: 10.3934/dcds.2015.35.5787

[9]

Fernando Alcalde Cuesta, Ana Rechtman. Minimal Følner foliations are amenable. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 685-707. doi: 10.3934/dcds.2011.31.685

[10]

Rafael De La Llave, A. Windsor. An application of topological multiple recurrence to tiling. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 315-324. doi: 10.3934/dcdss.2009.2.315

[11]

S. Eigen, V. S. Prasad. Tiling Abelian groups with a single tile. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 361-365. doi: 10.3934/dcds.2006.16.361

[12]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[13]

Nir Avni. Spectral and mixing properties of actions of amenable groups. Electronic Research Announcements, 2005, 11: 57-63.

[14]

Rui Pacheco, Helder Vilarinho. Statistical stability for multi-substitution tiling spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4579-4594. doi: 10.3934/dcds.2013.33.4579

[15]

Betseygail Rand, Lorenzo Sadun. An approximation theorem for maps between tiling spaces. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 323-326. doi: 10.3934/dcds.2011.29.323

[16]

Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903

[17]

Marcy Barge, Sonja Štimac, R. F. Williams. Pure discrete spectrum in substitution tiling spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 579-597. doi: 10.3934/dcds.2013.33.579

[18]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[19]

A. Yu. Ol'shanskii and M. V. Sapir. Non-amenable finitely presented torsion-by-cyclic groups. Electronic Research Announcements, 2001, 7: 63-71.

[20]

Younghwan Son. Substitutions, tiling dynamical systems and minimal self-joinings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4855-4874. doi: 10.3934/dcds.2014.34.4855

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (2)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]