May  2017, 37(5): 2787-2812. doi: 10.3934/dcds.2017120

Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise

1. 

School of Mathematical Science, Huaiyin Normal University, Huaian, 223300, China

2. 

Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China

* Corresponding author: Zhaojuan Wang

Received  July 2016 Revised  January 2017 Published  February 2017

Fund Project: The authors are supported by NSFC grant No. 11326114, 11401244, 11471290. Natural Science Research Project of Ordinary Universities in Jiangsu Province grant No. 14KJB110003. Zhejiang Natural Science Foundation grant No. LY14A010012 and Zhejiang Normal University Foundation grant No. ZC304014012.

In this paper we study the asymptotic behavior of solutions of the non-autonomous stochastic strongly damped wave equation driven by multiplicative noise defined on unbounded domains. We first introduce a continuous cocycle for the equation. Then we consider the existence of a tempered pullback random attractor for the cocycle. Finally we establish the upper semicontinuity of random attractors as the coefficient of the white noise term tends to zero.

Citation: Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120
References:
[1]

L. Arnold, Random Dynamical Systems Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. Google Scholar

[3]

P. Chow, Stochastic wave equation with polynomial nonlinearity, Ann. Appl. Probab, 12 (2002), 361-381. doi: 10.1214/aoap/1015961168. Google Scholar

[4]

I. Chueshov, Monotone Random Systems Theory and Applications Springer-Verlag, New York, 2002. doi: 10.1007/b83277. Google Scholar

[5]

H. Crauel, Random Probability Measure on Polish Spaces Taylor & Francis, London, 2002. doi: 10.4324/9780203219119. Google Scholar

[6]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341. doi: 10.1007/BF02219225. Google Scholar

[7]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. Google Scholar

[8]

H. CrauelP. E. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stochastics and Dynamics, 11 (2011), 301-314. doi: 10.1142/S0219493711003292. Google Scholar

[9]

J. DuanK. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135. doi: 10.1214/aop/1068646380. Google Scholar

[10]

X. Fan, Random attractor for a damped sine-Gordon equation with white noise, Pacific J. Math., 216 (2004), 63-76. doi: 10.2140/pjm.2004.216.63. Google Scholar

[11]

X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793. doi: 10.1080/07362990600751860. Google Scholar

[12]

X. Fan and Y. Wang, Fractal dimension of attractors for a stochastic wave equation with nonlinear damping and white noise, Stoch. Anal. Appl., 25 (2007), 381-396. doi: 10.1080/07362990601139602. Google Scholar

[13]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437. doi: 10.1142/S0129167X08004741. Google Scholar

[14]

R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. Real World Appl., 14 (2013), 1308-1322. doi: 10.1016/j.nonrwa.2012.09.019. Google Scholar

[15]

H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190. doi: 10.1016/j.jde.2014.09.007. Google Scholar

[16]

K. Lu and B. Schmalfuß, Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492. doi: 10.1016/j.jde.2006.09.024. Google Scholar

[17]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23. doi: 10.1016/j.jde.2007.10.009. Google Scholar

[18]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[19]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457. doi: 10.1016/j.jde.2009.10.007. Google Scholar

[20]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3. Google Scholar

[21]

B. Wang and X. Gao, Random attractors for wave equations on unbounded domains, Discr. Contin. Dyn. Syst. Supplement, (2009), 800–809. doi: 10.3934/proc.2009.2009.800. Google Scholar

[22]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663. doi: 10.1090/S0002-9947-2011-05247-5. Google Scholar

[23]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. Google Scholar

[24]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300. doi: 10.3934/dcds.2014.34.269. Google Scholar

[25]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms Stochastics and Dynamics 14 (2014), 1450009, 31 pp. doi: 10.1142/S0219493714500099. Google Scholar

[26]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrodinger equations and its applications, Physica D, 88 (1995), 167-175. doi: 10.1016/0167-2789(95)00196-B. Google Scholar

[27]

Z. WangS. Zhou and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482. doi: 10.1016/j.nonrwa.2011.06.008. Google Scholar

[28]

Z. WangS. Zhou and A. Gu, Random attractor of the stochastic strongly damped wave equation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1649-1658. doi: 10.1016/j.cnsns.2011.09.001. Google Scholar

[29]

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 5 (2015), 363-387. doi: 10.11948/2015031. Google Scholar

[30]

M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478. doi: 10.1016/j.nonrwa.2010.06.032. Google Scholar

[31]

S. ZhouF. Yin and Z. Ouyang, Random attractor for damped nonlinear wave equations with white noise, SIAM J. Appl. Dyn. Syst., 4 (2005), 883-903. doi: 10.1137/050623097. Google Scholar

[32]

S. Zhou and M. Zhao, Fractal dimension of random invariant sets for nonautonomous random dynamical systems and random attractor for stochastic damped wave equation, Nonlinear. Anal., 133 (2016), 292-318. doi: 10.1016/j.na.2015.12.013. Google Scholar

[33]

S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic damped wave equation with multiplicative noise, Discrete Contin. Dyn. Syst., 36 (2016), 2887-2914. doi: 10.3934/dcds.2016.36.2887. Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. Google Scholar

[3]

P. Chow, Stochastic wave equation with polynomial nonlinearity, Ann. Appl. Probab, 12 (2002), 361-381. doi: 10.1214/aoap/1015961168. Google Scholar

[4]

I. Chueshov, Monotone Random Systems Theory and Applications Springer-Verlag, New York, 2002. doi: 10.1007/b83277. Google Scholar

[5]

H. Crauel, Random Probability Measure on Polish Spaces Taylor & Francis, London, 2002. doi: 10.4324/9780203219119. Google Scholar

[6]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eqns., 9 (1997), 307-341. doi: 10.1007/BF02219225. Google Scholar

[7]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. Google Scholar

[8]

H. CrauelP. E. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stochastics and Dynamics, 11 (2011), 301-314. doi: 10.1142/S0219493711003292. Google Scholar

[9]

J. DuanK. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135. doi: 10.1214/aop/1068646380. Google Scholar

[10]

X. Fan, Random attractor for a damped sine-Gordon equation with white noise, Pacific J. Math., 216 (2004), 63-76. doi: 10.2140/pjm.2004.216.63. Google Scholar

[11]

X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793. doi: 10.1080/07362990600751860. Google Scholar

[12]

X. Fan and Y. Wang, Fractal dimension of attractors for a stochastic wave equation with nonlinear damping and white noise, Stoch. Anal. Appl., 25 (2007), 381-396. doi: 10.1080/07362990601139602. Google Scholar

[13]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437. doi: 10.1142/S0129167X08004741. Google Scholar

[14]

R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. Real World Appl., 14 (2013), 1308-1322. doi: 10.1016/j.nonrwa.2012.09.019. Google Scholar

[15]

H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190. doi: 10.1016/j.jde.2014.09.007. Google Scholar

[16]

K. Lu and B. Schmalfuß, Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492. doi: 10.1016/j.jde.2006.09.024. Google Scholar

[17]

Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244 (2008), 1-23. doi: 10.1016/j.jde.2007.10.009. Google Scholar

[18]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[19]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457. doi: 10.1016/j.jde.2009.10.007. Google Scholar

[20]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3. Google Scholar

[21]

B. Wang and X. Gao, Random attractors for wave equations on unbounded domains, Discr. Contin. Dyn. Syst. Supplement, (2009), 800–809. doi: 10.3934/proc.2009.2009.800. Google Scholar

[22]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663. doi: 10.1090/S0002-9947-2011-05247-5. Google Scholar

[23]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. Google Scholar

[24]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300. doi: 10.3934/dcds.2014.34.269. Google Scholar

[25]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms Stochastics and Dynamics 14 (2014), 1450009, 31 pp. doi: 10.1142/S0219493714500099. Google Scholar

[26]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrodinger equations and its applications, Physica D, 88 (1995), 167-175. doi: 10.1016/0167-2789(95)00196-B. Google Scholar

[27]

Z. WangS. Zhou and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482. doi: 10.1016/j.nonrwa.2011.06.008. Google Scholar

[28]

Z. WangS. Zhou and A. Gu, Random attractor of the stochastic strongly damped wave equation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1649-1658. doi: 10.1016/j.cnsns.2011.09.001. Google Scholar

[29]

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 5 (2015), 363-387. doi: 10.11948/2015031. Google Scholar

[30]

M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478. doi: 10.1016/j.nonrwa.2010.06.032. Google Scholar

[31]

S. ZhouF. Yin and Z. Ouyang, Random attractor for damped nonlinear wave equations with white noise, SIAM J. Appl. Dyn. Syst., 4 (2005), 883-903. doi: 10.1137/050623097. Google Scholar

[32]

S. Zhou and M. Zhao, Fractal dimension of random invariant sets for nonautonomous random dynamical systems and random attractor for stochastic damped wave equation, Nonlinear. Anal., 133 (2016), 292-318. doi: 10.1016/j.na.2015.12.013. Google Scholar

[33]

S. Zhou and M. Zhao, Fractal dimension of random attractor for stochastic damped wave equation with multiplicative noise, Discrete Contin. Dyn. Syst., 36 (2016), 2887-2914. doi: 10.3934/dcds.2016.36.2887. Google Scholar

[1]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[2]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[3]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[4]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[5]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2019115

[6]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[7]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[8]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[9]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035

[10]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[11]

Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227

[12]

Pengyan Ding, Zhijian Yang. Attractors of the strongly damped Kirchhoff wave equation on $\mathbb{R}^{N}$. Communications on Pure & Applied Analysis, 2019, 18 (2) : 825-843. doi: 10.3934/cpaa.2019040

[13]

Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023

[14]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[15]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

[16]

Yonghai Wang, Chengkui Zhong. Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3189-3209. doi: 10.3934/dcds.2013.33.3189

[17]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[18]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[19]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[20]

Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (9)
  • Cited by (0)

Other articles
by authors

[Back to Top]