We study the escaping set of functions in the class $\mathcal{B}^*$, that is, transcendental self-maps of $\mathbb{C}^*$ for which the set of singular values is contained in a compact annulus of $\mathbb{C}^*$ that separates zero from infinity. For functions in the class $\mathcal{B}^*$, escaping points lie in their Julia set. If $f$ is a composition of finite order transcendental self-maps of $\mathbb{C}^*$ (and hence, in the class $\mathcal{B}^*$), then we show that every escaping point of $f$ can be connected to one of the essential singularities by a curve of points that escape uniformly. Moreover, for every sequence $e∈\{0,∞\}^{\mathbb{N}_0}$, we show that the escaping set of $f$ contains a Cantor bouquet of curves that accumulate to the set $\{0,∞\}$ according to $e$ under iteration by $f$.
Citation: |
Figure 1. Period 8 cycle of rays landing on a repelling period 4 orbit in the unit circle for the function $f_{\alpha\beta}(z)=ze^{i\alpha}e^{\beta(z-1/z)/2}$ from the Arnol'd standard family, with $\alpha=0.19725$ and $\beta=0.48348$. Such points lie in the set $I_e(f_{\alpha\beta})$ with $e=\overline{\infty 0 \infty\infty 0 \infty 0 0}$ (see (2)).
J. M. Aarts
and L. G. Oversteegen
, The geometry of Julia sets, Trans. Amer. Math. Soc., 338 (1993)
, 897-918.
doi: 10.1090/S0002-9947-1993-1182980-3.![]() ![]() ![]() |
|
K. Barański
, Trees and hairs for some hyperbolic entire maps of finite order, Math. Z., 257 (2007)
, 33-59.
doi: 10.1007/s00209-007-0114-7.![]() ![]() ![]() |
|
K. Barański
, X. Jarque
and L. Rempe
, Brushing the hairs of transcendental entire functions, Topology Appl., 159 (2012)
, 2102-2114.
doi: 10.1016/j.topol.2012.02.004.![]() ![]() ![]() |
|
A. M. Benini
and N. Fagella
, A separation theorem for entire transcendental maps, Proc. Lond. Math. Soc. (3), 110 (2015)
, 291-324.
doi: 10.1112/plms/pdu047.![]() ![]() ![]() |
|
W. Bergweiler
, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.), 29 (1993)
, 151-188.
doi: 10.1090/S0273-0979-1993-00432-4.![]() ![]() ![]() |
|
W. Bergweiler
, On the Julia set of analytic self-maps of the punctured plane, Analysis, 15 (1995)
, 251-256.
doi: 10.1524/anly.1995.15.3.251.![]() ![]() ![]() |
|
W. Bergweiler
and A. E. Eremenko
, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana, 11 (1995)
, 355-373.
doi: 10.4171/RMI/176.![]() ![]() ![]() |
|
W. Bergweiler
and A. Hinkkanen
, On semiconjugation of entire functions, Math. Proc. Cambridge Philos. Soc., 126 (1999)
, 565-574.
doi: 10.1017/S0305004198003387.![]() ![]() ![]() |
|
W. Bergweiler
, P. J. Rippon
and G. M. Stallard
, Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. Lond. Math. Soc. (3), 97 (2008)
, 368-400.
doi: 10.1112/plms/pdn007.![]() ![]() ![]() |
|
C. J. Bishop
, Constructing entire functions by quasiconformal folding, Acta Math., 214 (2015)
, 1-60.
doi: 10.1007/s11511-015-0122-0.![]() ![]() ![]() |
|
J. Clunie
and T. Kövari
, On integral functions having prescribed asymptotic growth. Ⅱ, Canad. J. Math., 20 (1968)
, 7-20.
doi: 10.4153/CJM-1968-002-1.![]() ![]() ![]() |
|
A. Deniz
, A landing theorem for periodic dynamic rays for transcendental entire maps with bounded post-singular set, J. Difference Equ. Appl., 20 (2014)
, 1627-1640.
doi: 10.1080/10236198.2014.968564.![]() ![]() ![]() |
|
R. L. Devaney
and M. Krych
, Dynamics of exp(z), Ergodic Theory Dynam. Systems, 4 (1984)
, 35-52.
doi: 10.1017/S014338570000225X.![]() ![]() ![]() |
|
R. L. Devaney
and F. Tangerman
, Dynamics of entire functions near the essential singularity, Ergodic Theory Dynam. Systems, 6 (1986)
, 489-503.
doi: 10.1017/S0143385700003655.![]() ![]() ![]() |
|
A. Douady and J. H. Hubbard,
Étude Dynamique Des Polynômes Complexes. Partie Ⅰ/Ⅱ Publications Mathématiques d'Orsay, 84/85 Université de Paris-Sud, Département de Mathématiques, Orsay, 1984/1985.
![]() ![]() |
|
A. E. Eremenko
, On the iteration of entire functions Dynamical systems and ergodic theory (Warsaw, 1986), Banach Center Publ., PWN, Warsaw, 23 (1989)
, 339-345.
![]() ![]() |
|
A. E. Eremenko
and M. Yu. Lyubich
, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble), 42 (1992)
, 989-1020.
doi: 10.5802/aif.1318.![]() ![]() ![]() |
|
N. Fagella
, Dynamics of the complex standard family, J. Math. Anal. Appl., 229 (1999)
, 1-31.
doi: 10.1006/jmaa.1998.6134.![]() ![]() ![]() |
|
P. Fatou
, Sur l'itération des fonctions transcendantes entiéres, Acta Math., 47 (1926)
, 337-370.
doi: 10.1007/BF02559517.![]() ![]() ![]() |
|
O. Forster,
Lectures on Riemann Surfaces Translated from the German by Bruce Gilligan. Graduate Texts in Mathematics, 81 Springer-Verlag, New York-Berlin, 1981.
![]() ![]() |
|
W. K. Hayman,
Meromorphic Functions Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
![]() ![]() |
|
M. Heins
, Entire functions with bounded minimum modulus; subharmonic function analogues, Ann. of Math. (2), 49 (1948)
, 200-213.
doi: 10.2307/1969122.![]() ![]() ![]() |
|
F. Iversen,
Recherches sur les fonctions inverses des fonctions méromorphes Ph. D. thesis, Helsingin Yliopisto, 1914.
![]() |
|
L. Keen, Dynamics of holomorphic self-maps of C*, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), 9-30, Math. Sci. Res. Inst. Publ. 10, Springer, New York, 1988.
doi: 10.1007/978-1-4613-9602-4_2.![]() ![]() ![]() |
|
L. Keen
, Topology and growth of a special class of holomorphic self-maps of $\textbf{C}^* $, Ergodic Theory Dynam. Systems, 9 (1989)
, 321-328.
doi: 10.1017/S0143385700004995.![]() ![]() ![]() |
|
J. Kotus, Iterated holomorphic maps on the punctured plane, Dynamical systems (Sopron, 1985), 10-28, Lecture Notes in Econom. and Math. Systems 287, Springer, Berlin, 1987.
doi: 10.1007/978-3-662-00748-8_2.![]() ![]() ![]() |
|
J. K. Langley
, On the multiple points of certain meromorphic functions, Proc. Amer. Math. Soc., 123 (1995)
, 1787-1795.
doi: 10.1090/S0002-9939-1995-1242092-4.![]() ![]() ![]() |
|
P. M. Makienko, Iterations of analytic functions in C* Dokl. Akad. Nauk SSSR, 297 (1987), 35-37; translation in Soviet Math. Dokl. , 36 (1988), 418-420.
![]() ![]() |
|
D. Martí-Pete,
Structural Theorems for Holomorphic Self-maps of the Punctured Plane Ph. D. thesis, The Open University, 2016.
![]() |
|
D. Martí-Pete, The escaping set of transcendental self-maps of the punctured plane, to appear in Ergodic Theory Dynam. Systems arXiv: 1412.1032.
![]() |
|
D. Martí-Pete, Escaping Fatou components of transcendental self-maps of the punctured plane, in preparation.
![]() |
|
H. Mihaljević-Brandt
and L. Rempe-Gillen
, Absence of wandering domains for some real entire functions with bounded singular sets, Math. Ann., 357 (2013)
, 1577-1604.
doi: 10.1007/s00208-013-0936-z.![]() ![]() ![]() |
|
J. W. Milnor,
Dynamics in One Complex Variable 3rd edition, Annals of Mathematics Studies, 160 Princeton University Press, Princeton, NJ, 2006.
doi: 10.1007/978-3-663-08092-3.![]() ![]() ![]() |
|
S. B. Nadler, Jr. ,
Continuum Theory. An introduction Monographs and Textbooks in Pure and Applied Mathematics, 158 Marcel Dekker Inc. , New York, 1992.
![]() ![]() |
|
G. Pólya
, On an integral function of an integral function, J. London Math. Soc., S1-1 (1925)
, 12-15.
doi: 10.1112/jlms/s1-1.1.12.![]() ![]() ![]() |
|
H. Rådström
, On the iteration of analytic functions, Math. Scand., 1 (1953)
, 85-92.
doi: 10.7146/math.scand.a-10367.![]() ![]() ![]() |
|
L. Rempe
, A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc., 134 (2006)
, 2639-2648 (electronic).
doi: 10.1090/S0002-9939-06-08287-6.![]() ![]() ![]() |
|
L. Rempe
, On a question of Eremenko concerning escaping components of entire functions, Bull. Lond. Math. Soc., 39 (2007)
, 661-666.
doi: 10.1112/blms/bdm053.![]() ![]() ![]() |
|
L. Rempe
, Siegel disks and periodic rays of entire functions, J. Reine Angew. Math., 624 (2008)
, 81-102.
doi: 10.1515/CRELLE.2008.081.![]() ![]() ![]() |
|
L. Rempe
, P. J. Rippon
and G. M. Stallard
, Are Devaney hairs fast escaping?, J. Difference Equ. Appl., 16 (2010)
, 739-762.
doi: 10.1080/10236190903282824.![]() ![]() ![]() |
|
L. Rempe-Gillen and D. J. Sixsmith, Hyperbolic entire functions and the Eremenko-Lyubich
class: Class $\mathcal{B} $ or not class $\mathcal{B}$?, to appear in Math. Z., (2016), 1-18, arXiv: 1502.00492.
![]() |
|
P. J. Rippon
and G. M. Stallard
, Dimensions of Julia sets of meromorphic functions, J. London Math. Soc. (2), 71 (2005)
, 669-683.
doi: 10.1112/S0024610705006393.![]() ![]() ![]() |
|
P. J. Rippon
and G. M. Stallard
, On questions of Fatou and Eremenko, Proc. Amer. Math. Soc., 133 (2005)
, 1119-1126 (electronic).
doi: 10.1090/S0002-9939-04-07805-0.![]() ![]() ![]() |
|
G. Rottenfusser
, J. Rückert
, L. Rempe
and D. Schleicher
, Dynamic rays of bounded-type entire functions, Ann. of Math. (2), 173 (2011)
, 77-125.
doi: 10.4007/annals.2011.173.1.3.![]() ![]() ![]() |
|
D. Schleicher
and J. Zimmer
, Escaping points of exponential maps, J. London Math. Soc. (2), 67 (2003)
, 380-400.
doi: 10.1112/S0024610702003897.![]() ![]() ![]() |
|
D. Schleicher
and J. Zimmer
, Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 28 (2003)
, 327-354.
![]() ![]() |
|
D. J. Sixsmith
, A new characterisation of the Eremenko-Lyubich class, J. Anal. Math., 123 (2014)
, 95-105.
doi: 10.1007/s11854-014-0014-9.![]() ![]() ![]() |
|
D. Sullivan
, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2), 122 (1985)
, 401-418.
doi: 10.2307/1971308.![]() ![]() ![]() |
|
G. Valiron,
Lectures on the General Theory of Integral Functions Chelsea Publishing Company, New York, 1949.
![]() |
Period 8 cycle of rays landing on a repelling period 4 orbit in the unit circle for the function
Logarithmic coordinates for a function
Phase space of the function
Logarithmic tracts of functions of finite order with
Fundamental domains of a function
In the left, we have the phase space of the function