\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Limit cycles for quadratic and cubic planar differential equations under polynomial perturbations of small degree

  • * Corresponding author: R. M. Martins

    * Corresponding author: R. M. Martins 

R. M. Martins is partially supported by Fapesp grant 2015/06903-8. O. M. L. Gomide is supported by Fapesp grant 2013/18168-5..

Abstract / Introduction Full Text(HTML) Figure(1) / Table(6) Related Papers Cited by
  • In this paper we consider planar systems of differential equations of the form

    $\left\{ \begin{array}{lcl} \dot x&=&-y+\delta p(x,y)+\varepsilon P_n(x,y),\\ \dot y&=&x+\delta q(x,y)+\varepsilon Q_n(x,y), \end{array} \right.$

    where $δ, \varepsilon$ are small parameters, $(p, q)$ are quadratic or cubic homogeneous polynomials such that the unperturbed system ($\varepsilon=0$) has an isochronous center at the origin and $P_n, Q_n$ are arbitrary perturbations. Estimates for the maximum number of limit cycles are provided and these estimatives are sharp for $n≤q 6$ (when $p, q$ are quadratic). When $p, q$ are cubic polynomials and $P_n, Q_n$ are linear, the problem is addressed from a numerical viewpoint and we also study the existence of limit cycles.

    Mathematics Subject Classification: Primary: 34C14, 34C20; Secondary: 37J15, 37J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Projections of $\Omega$ and $\partial\mathcal H$ in the $xy$-plane for different values of $z,w$

    Table 1.  Maximum number of limit cycles bifurcating from polynomial perturbations of a given degree of system (S1)

    Perturbation Degree Maximum Number of Bifurcating Limit Cycles
    1 1
    2 1
    3 1
    4 2
    5 3
    6 4
    7 5
     | Show Table
    DownLoad: CSV

    Table 2.  Maximum number of limit cycles bifurcating from polynomial perturbations of a given degree of system (S2).

    Perturbation Degree Maximum Number of Bifurcating Limit Cycles
    1 0
    2 4
    3 3
    4 4
    5 8
    6 6
     | Show Table
    DownLoad: CSV

    Table 3.  Degree of the polynomial part of $F_1^{[n]}(Z)$ according to the value of $n$.

    Value of n Degree of $f_1^{[n]}$
    1 2
    2 2
    3 2
    4 4
    5 6
    6 8
    7 10
     | Show Table
    DownLoad: CSV

    Table 4.  Degree of the perturbation in (19), degree of the polynomial part of $F_1^{[n]}(Z)$ according to the value of $n$ and maximum number of limit cycles

    Value of n Degree of $f_1^{[n]}$ Maximum number of limit cycles
    1 2 1
    2 2 1
    3 2 1
    4 4 2
    5 6 3
    6 8 4
    7 10 5
     | Show Table
    DownLoad: CSV

    Table 5.  Degree of the polynomial part of $F_2^{[n]}(Z)$ according to the value of $n$

    Value of n Degree of $f_1^{[n]}$
    1 1
    2 2
    3 3
    4 5
    5 7
    6 9
     | Show Table
    DownLoad: CSV

    Table 6.  Degree of the perturbation in (25), degree of the polynomial part of $F_2^{[n]}(Z)$ according to the value of $n$ and maximum number of limit cycles.

    Value of n Degree of $f_1^{[n]}$ Maximum number of limit cycles
    1 1 0
    2 2 2
    3 3 3
    4 5 4
    5 7 5
    6 9 6
     | Show Table
    DownLoad: CSV
  •   L. Ahlfors, Complex Analysis International Series in Pure and Applied Mathematics 7, McGraw-Hill, 1978.
      T. Boni , P. Mardesic  and  C. Rousseau , Linearization of isochronous centers, Journal of Differential Equations, 121 (1995) , 67-108.  doi: 10.1006/jdeq.1995.1122.
      A. Buică  and  J. Llibre , Averaging methods for finding periodic orbits via Brouwer degree, Bulletin des Sciences Mathématiques, 128 (2004) , 7-22.  doi: 10.1016/j.bulsci.2003.09.002.
      L. Cairó  and  J. Llibre , Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3, J. Math. Anal. Appl., 331 (2007) , 1284-1298.  doi: 10.1016/j.jmaa.2006.09.066.
      J. Chavarriga  and  M. Sabatini , A Survey of Isochronous Centers, Qualitative Theory of Dynamical Systems, 1 (1999) , 1-70.  doi: 10.1007/BF02969404.
      C. Chicone  and  M. Jacobs , Bifurcation of limit cycles from quadratic isochrones, Journal of Differential Equations, 91 (1991) , 268-326.  doi: 10.1016/0022-0396(91)90142-V.
      C. Colin and L. Chengzhi, Limit Cycles of Differential Equations Birkhäuser Verlag, 2007.
      F. Dumortier  and  R. Roussarie , Abelian integrals and limit cycles, Journal of Differential Equations, 227 (2006) , 116-165.  doi: 10.1016/j.jde.2005.08.015.
      J. Giné  and  J. Llibre , Limit cycles of cubic polynomial vector fields via the averaging theory, Nonlinear Analysis: Theory, Methods & Applications, 66 (2007) , 1707-1721.  doi: 10.1016/j.na.2006.02.016.
      M. Han , On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, Journal of Applied Analysis and Computation, 7 (2017) , 788-794. 
      M. Han and P. Yu, Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles, Applied Mathematical Sciences, 181, Springer, 2012. doi: 10.1007/978-1-4471-2918-9.
      Y. Ilyashenko  and  J. Llibre , A restricted version of Hilbert's 16th problem for quadratic vector fields, Mosc. Math. J., 10 (2010) , 317-335. 
      S. Li , Y. Shao  and  J. Li , On the number of limit cycles of a perturbed cubic polynomial differential center, Journal of Mathematical Analysis and Applications, 404 (2013) , 212-220.  doi: 10.1016/j.jmaa.2013.03.010.
      J. Llibre  and  J. Itikawa , Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, Journal of Computational and Applied Mathematics, 277 (2015) , 171-191.  doi: 10.1016/j.cam.2014.09.007.
      J. Llibre, Periodic Solutions Via Averaging Theory, Notes of the Advanced Course RTNS2014 held in Bellaterra (CRM), January 27–31, 2014.
      J. Llibre  and  A. C. Mereu , Limit cycles for discontinuous quadratic differential systems with two zones, Journal of Mathematical Analysis and Applications, 413 (2014) , 763-775.  doi: 10.1016/j.jmaa.2013.12.031.
      J. Llibre  and  A. C. Mereu , Limit cycles for generalized Kukles polynomial differential systems, Nonlinear Analysis, 74 (2011) , 1261-1271.  doi: 10.1016/j.na.2010.09.064.
      J. Llibre, R. M. Martins and M. A. Teixeira, Periodic orbits, invariant tori and cylinders of Hamiltonian systems near integrable ones having a return map equal to the identity, J. Math. Phys. , 51 (2010), 082704, 11pp. doi: 10.1063/1.3477937.
      W. S. Loud , Behavior of the period of solutions of certain plane autonomous systems near centers, Contributions to Differential Equations, 3 (1964) , 21-36. 
      R. M. Martins , A. C. Mereu  and  R. Oliveira , An estimation for the number of limit cycles in a Liénard-like perturbation of a quadratic nonlinear center, Nonlinear Dynamics, 79 (2015) , 185-194.  doi: 10.1007/s11071-014-1655-z.
      J. Murdock, A. Sanders and F. Verhultst, Averaging methods in Nonlinear Dynamical Systems 2nd edition, Appl. Math. Sci, 59, Springer, 2007.
      I. A. Pleshkan , A new method of investigating the isochronocity of a system of two differential equations, Differential Equations, 5 (1969) , 796-802. 
      J. Spanier  and  K. B. Oldham , The complete elliptic integrals K(p) and E(p) and "The incomplete elliptic integrals F(p;phi) and E(p;phi),", Chs. 61-62 in An Atlas of Functions. Washington, DC: Hemisphere, (1987) , 609-633. 
      F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Second edition. Universitext. Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-61453-8.
      E. T. Whittaker and G. N. Watson, A Course on Modern Analysis, second edition. Cambridge University Press, 1915. doi: 10.1017/CBO9780511608759.
      P. Yu  and  M. Han , Bifurcation of limit cycles in quadratic Hamiltonian systems with various degree polynomial perturbations, Chaos, Solitons & Fractals, 45 (2012) , 772-794.  doi: 10.1016/j.chaos.2012.02.010.
  • 加载中

Figures(1)

Tables(6)

SHARE

Article Metrics

HTML views(2341) PDF downloads(235) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return