Perturbation Degree | Maximum Number of Bifurcating Limit Cycles |
1 | 1 |
2 | 1 |
3 | 1 |
4 | 2 |
5 | 3 |
6 | 4 |
7 | 5 |
In this paper we consider planar systems of differential equations of the form
$\left\{ \begin{array}{lcl} \dot x&=&-y+\delta p(x,y)+\varepsilon P_n(x,y),\\ \dot y&=&x+\delta q(x,y)+\varepsilon Q_n(x,y), \end{array} \right.$
where $δ, \varepsilon$ are small parameters, $(p, q)$ are quadratic or cubic homogeneous polynomials such that the unperturbed system ($\varepsilon=0$) has an isochronous center at the origin and $P_n, Q_n$ are arbitrary perturbations. Estimates for the maximum number of limit cycles are provided and these estimatives are sharp for $n≤q 6$ (when $p, q$ are quadratic). When $p, q$ are cubic polynomials and $P_n, Q_n$ are linear, the problem is addressed from a numerical viewpoint and we also study the existence of limit cycles.
Citation: |
Table 1. Maximum number of limit cycles bifurcating from polynomial perturbations of a given degree of system (S1)
Perturbation Degree | Maximum Number of Bifurcating Limit Cycles |
1 | 1 |
2 | 1 |
3 | 1 |
4 | 2 |
5 | 3 |
6 | 4 |
7 | 5 |
Table 2. Maximum number of limit cycles bifurcating from polynomial perturbations of a given degree of system (S2).
Perturbation Degree | Maximum Number of Bifurcating Limit Cycles |
1 | 0 |
2 | 4 |
3 | 3 |
4 | 4 |
5 | 8 |
6 | 6 |
Table 3.
Degree of the polynomial part of
Value of n | Degree of $f_1^{[n]}$ |
1 | 2 |
2 | 2 |
3 | 2 |
4 | 4 |
5 | 6 |
6 | 8 |
7 | 10 |
Table 4.
Degree of the perturbation in (19), degree of the polynomial part of
Value of n | Degree of $f_1^{[n]}$ | Maximum number of limit cycles |
1 | 2 | 1 |
2 | 2 | 1 |
3 | 2 | 1 |
4 | 4 | 2 |
5 | 6 | 3 |
6 | 8 | 4 |
7 | 10 | 5 |
Table 5.
Degree of the polynomial part of
Value of n | Degree of $f_1^{[n]}$ |
1 | 1 |
2 | 2 |
3 | 3 |
4 | 5 |
5 | 7 |
6 | 9 |
Table 6.
Degree of the perturbation in (25), degree of the polynomial part of
Value of n | Degree of $f_1^{[n]}$ | Maximum number of limit cycles |
1 | 1 | 0 |
2 | 2 | 2 |
3 | 3 | 3 |
4 | 5 | 4 |
5 | 7 | 5 |
6 | 9 | 6 |
L. Ahlfors,
Complex Analysis International Series in Pure and Applied Mathematics 7, McGraw-Hill, 1978.
![]() ![]() |
|
T. Boni
, P. Mardesic
and C. Rousseau
, Linearization of isochronous centers, Journal of Differential Equations, 121 (1995)
, 67-108.
doi: 10.1006/jdeq.1995.1122.![]() ![]() ![]() |
|
A. Buică
and J. Llibre
, Averaging methods for finding periodic orbits via Brouwer degree, Bulletin des Sciences Mathématiques, 128 (2004)
, 7-22.
doi: 10.1016/j.bulsci.2003.09.002.![]() ![]() ![]() |
|
L. Cairó
and J. Llibre
, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3, J. Math. Anal. Appl., 331 (2007)
, 1284-1298.
doi: 10.1016/j.jmaa.2006.09.066.![]() ![]() ![]() |
|
J. Chavarriga
and M. Sabatini
, A Survey of Isochronous Centers, Qualitative Theory of Dynamical Systems, 1 (1999)
, 1-70.
doi: 10.1007/BF02969404.![]() ![]() ![]() |
|
C. Chicone
and M. Jacobs
, Bifurcation of limit cycles from quadratic isochrones, Journal of Differential Equations, 91 (1991)
, 268-326.
doi: 10.1016/0022-0396(91)90142-V.![]() ![]() ![]() |
|
C. Colin and L. Chengzhi,
Limit Cycles of Differential Equations Birkhäuser Verlag, 2007.
![]() ![]() |
|
F. Dumortier
and R. Roussarie
, Abelian integrals and limit cycles, Journal of Differential Equations, 227 (2006)
, 116-165.
doi: 10.1016/j.jde.2005.08.015.![]() ![]() ![]() |
|
J. Giné
and J. Llibre
, Limit cycles of cubic polynomial vector fields via the averaging theory, Nonlinear Analysis: Theory, Methods & Applications, 66 (2007)
, 1707-1721.
doi: 10.1016/j.na.2006.02.016.![]() ![]() ![]() |
|
M. Han
, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, Journal of Applied Analysis and Computation, 7 (2017)
, 788-794.
![]() |
|
M. Han and P. Yu,
Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles, Applied Mathematical Sciences, 181, Springer, 2012.
doi: 10.1007/978-1-4471-2918-9.![]() ![]() ![]() |
|
Y. Ilyashenko
and J. Llibre
, A restricted version of Hilbert's 16th problem for quadratic vector fields, Mosc. Math. J., 10 (2010)
, 317-335.
![]() ![]() |
|
S. Li
, Y. Shao
and J. Li
, On the number of limit cycles of a perturbed cubic polynomial differential center, Journal of Mathematical Analysis and Applications, 404 (2013)
, 212-220.
doi: 10.1016/j.jmaa.2013.03.010.![]() ![]() ![]() |
|
J. Llibre
and J. Itikawa
, Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, Journal of Computational and Applied Mathematics, 277 (2015)
, 171-191.
doi: 10.1016/j.cam.2014.09.007.![]() ![]() ![]() |
|
J. Llibre, Periodic Solutions Via Averaging Theory, Notes of the Advanced Course RTNS2014
held in Bellaterra (CRM), January 27–31, 2014.
![]() |
|
J. Llibre
and A. C. Mereu
, Limit cycles for discontinuous quadratic differential systems with two zones, Journal of Mathematical Analysis and Applications, 413 (2014)
, 763-775.
doi: 10.1016/j.jmaa.2013.12.031.![]() ![]() ![]() |
|
J. Llibre
and A. C. Mereu
, Limit cycles for generalized Kukles polynomial differential systems, Nonlinear Analysis, 74 (2011)
, 1261-1271.
doi: 10.1016/j.na.2010.09.064.![]() ![]() ![]() |
|
J. Llibre, R. M. Martins and M. A. Teixeira, Periodic orbits, invariant tori and cylinders of Hamiltonian systems near integrable ones having a return map equal to the identity, J. Math. Phys. , 51 (2010), 082704, 11pp.
doi: 10.1063/1.3477937.![]() ![]() ![]() |
|
W. S. Loud
, Behavior of the period of solutions of certain plane autonomous systems near centers, Contributions to Differential Equations, 3 (1964)
, 21-36.
![]() ![]() |
|
R. M. Martins
, A. C. Mereu
and R. Oliveira
, An estimation for the number of limit cycles in a Liénard-like perturbation of a quadratic nonlinear center, Nonlinear Dynamics, 79 (2015)
, 185-194.
doi: 10.1007/s11071-014-1655-z.![]() ![]() ![]() |
|
J. Murdock, A. Sanders and F. Verhultst,
Averaging methods in Nonlinear Dynamical Systems 2nd edition, Appl. Math. Sci, 59, Springer, 2007.
![]() ![]() |
|
I. A. Pleshkan
, A new method of investigating the isochronocity of a system of two differential equations, Differential Equations, 5 (1969)
, 796-802.
![]() |
|
J. Spanier
and K. B. Oldham
, The complete elliptic integrals K(p) and E(p) and "The incomplete elliptic integrals F(p;phi) and E(p;phi),", Chs. 61-62 in An Atlas of Functions. Washington, DC: Hemisphere, (1987)
, 609-633.
![]() |
|
F. Verhulst,
Nonlinear Differential Equations and Dynamical Systems, Second edition. Universitext. Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-642-61453-8.![]() ![]() ![]() |
|
E. T. Whittaker and G. N. Watson,
A Course on Modern Analysis, second edition. Cambridge University Press, 1915.
doi: 10.1017/CBO9780511608759.![]() ![]() |
|
P. Yu
and M. Han
, Bifurcation of limit cycles in quadratic Hamiltonian systems with various degree polynomial perturbations, Chaos, Solitons & Fractals, 45 (2012)
, 772-794.
doi: 10.1016/j.chaos.2012.02.010.![]() ![]() ![]() |
Projections of