We prove new inhomogeneous generalized Strichartz estimates, which do not follow from the homogeneous generalized estimates by virtue of the Christ-Kiselev lemma. Instead, we make use of the bilinear interpolation argument worked out by Keel and Tao and refined by Foschi presented in a unified framework. Finally, we give a sample application.
Citation: |
Figure 1. This pictorial representation generalizes [7,Figure 2,p.5]. The axes refer to the spatial integrability coefficients. The rectangle $ABCD$ corresponds to estimates found from factorization and the application of the Christ-Kiselev lemma up to endpoints. The origin relates to the dispersive estimate; one finds local estimates to hold in the wedge $AOCD$ by virtue of interpolation, restrictions on global estimates cut off estimates with too large spatial integrability coefficients
Figure 2. We give a pictorial representation similar to [3,Figure 1,p.1907]. In the setting of [3,Corollary 1.,p.1907] we find $A=(\frac{n-a}{2n},\frac{1}{2}), \, B= (\frac{n}{n+a}-\frac{n}{2(n+1)},\frac{n}{n+a}-\frac{n}{2(n+1)}), \, C=(\frac{n}{2(n+1)},\frac{n}{2(n+1)}), \, D=(\frac{1}{2},0)$, where the open line $\overline{BC}$ corresponds to the range from [3,Theorem 1.2.,p.1908] and the closed line $\overline{AD}$ corresponds to estimates found from factorization and application of the Christ-Kiselev lemma
J. Bergh and J. Löfström,
Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-New York, 1976, Grundlehren der Mathematischen Wissenschaften, No. 223.
![]() ![]() |
|
J.-M. Bouclet and H. Mizutani, Uniform resolvent and Strichartz estimates for Schrödinger equations with critical singularities, preprint, arXiv: 1607.01187.
![]() |
|
C.-H. Cho
, Y. Koh
and I. Seo
, On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications, Discrete Contin. Dyn. Syst., 36 (2016)
, 1905-1926.
doi: 10.3934/dcds.2016.36.1905.![]() ![]() ![]() |
|
Y. Cho
and S. Lee
, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013)
, 991-1020.
doi: 10.1512/iumj.2013.62.4970.![]() ![]() ![]() |
|
Y. Cho
, T. Ozawa
and S. Xia
, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011)
, 1121-1128.
doi: 10.3934/cpaa.2011.10.1121.![]() ![]() ![]() |
|
M. Christ
and A. Kiselev
, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001)
, 409-425.
doi: 10.1006/jfan.2000.3687.![]() ![]() ![]() |
|
D. Foschi
, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005)
, 1-24.
doi: 10.1142/S0219891605000361.![]() ![]() ![]() |
|
L. Grafakos,
Classical Fourier Analysis, vol. 249 of Graduate Texts in Mathematics, 2nd edition, Springer, New York, 2008.
![]() ![]() |
|
L. Grafakos,
Modern Fourier Analysis, vol. 250 of Graduate Texts in Mathematics, 2nd edition, Springer, New York, 2009.
doi: 10.1007/978-0-387-09434-2.![]() ![]() ![]() |
|
Z. Guo
, Sharp spherically averaged Stichartz estimates for the Schrödinger equation, Nonlinearity, 29 (2016)
, 1668-1686.
doi: 10.1088/0951-7715/29/5/1668.![]() ![]() ![]() |
|
Z. Guo
, S. Lee
, K. Nakanishi
and C. Wang
, Generalized Strichartz estimates and scattering for 3D Zakharov system, Comm. Math. Phys., 331 (2014)
, 239-259.
doi: 10.1007/s00220-014-2006-0.![]() ![]() |
|
Z. Guo
, L. Peng
and B. Wang
, Decay estimates for a class of wave equations, J. Funct. Anal., 254 (2008)
, 1642-1660.
doi: 10.1016/j.jfa.2007.12.010.![]() ![]() ![]() |
|
J.-C. Jiang
, C. Wang
and X. Yu
, Generalized and weighted Strichartz estimates, Commun. Pure Appl. Anal., 11 (2012)
, 1723-1752.
doi: 10.3934/cpaa.2012.11.1723.![]() ![]() ![]() |
|
M.Keel and T.Tao, Endpoint Strichartz estimates,Amer. J. Math., 120 (1998), 955-980, URL http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.5keel.pdf.
doi: 10.1353/ajm.1998.0039.![]() ![]() ![]() |
|
H. Mizutani, Remarks on endpoint Strichartz estimates for Schrödinger equations with the critical inverse-square potential, preprint,
arXiv: 1607.02848.
![]() |
|
E. Y. Ovcharov
, Radial Strichartz estimates with application to the 2-D Dirac-Klein-Gordon system, Comm. Partial Differential Equations, 37 (2012)
, 1754-1788.
doi: 10.1080/03605302.2011.632047.![]() ![]() |
|
I. Rodnianski
and W. Schlag
, Time decay for solutions of Schrödinger equations with rough and time-dependent potenetials, Invent. Math., 155 (2004)
, 451-513.
doi: 10.1007/s00222-003-0325-4.![]() ![]() ![]() |
|
C. D. Sogge,
Fourier Integrals in Classical Analysis vol. 105 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1993.
doi: 10.1017/CBO9780511530029.![]() ![]() ![]() |
|
J. Sterbenz
, Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not., (2005)
, 187-231, With an appendix by Igor Rodnianski.
doi: 10.1155/IMRN.2005.187.![]() ![]() ![]() |
|
T. Tao
, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation, Comm. Partial Differential Equations, 25 (2000)
, 1471-1485.
doi: 10.1080/03605300008821556.![]() ![]() ![]() |
This pictorial representation generalizes [7,Figure 2,p.5]. The axes refer to the spatial integrability coefficients. The rectangle
We give a pictorial representation similar to [3,Figure 1,p.1907]. In the setting of [3,Corollary 1.,p.1907] we find