In this paper we study a classification of linear systems on Lie groups with respect to the conjugacy of the corresponding flows. We also describe stability according to Lyapunov exponents.
Citation: |
V. Ayala
, F. Colonius
and W. Kliemann
, On topological equivalence of linear flows with applications to bilinear control systems, J. Dyn. Control Syst., 13 (2007)
, 337-362.
doi: 10.1007/s10883-007-9021-9.![]() ![]() ![]() |
|
F. Colonius and W. Kliemann,
Dynamical Systems and Linear Algebra, American Mathematical Society, 2014.
![]() ![]() |
|
F. Colonius
and A.J. Santana
, Topological conjugacy for affine-linear flows and control systems, Commun. Pure Appl. Anal., 10 (2011)
, 847-857.
doi: 10.3934/cpaa.2011.10.847.![]() ![]() ![]() |
|
A. Da Silva
, Controllability of linear systems on solvable Lie groups, SIAM J. Control Optim., 54 (2016)
, 372-390.
doi: 10.1137/140998342.![]() ![]() ![]() |
|
C. Kawan
, O.G. Rocio
and A.J. Santana
, On topological conjugacy of left invariant flows on semisimple and affine Lie groups, Proyecciones, 30 (2011)
, 175-188.
![]() ![]() |
|
N. H. Kuiper
and J. W. Robbin
, Topological classification of linear endomorphisms, Invent. Math., 19 (1973)
, 83-106.
doi: 10.1007/BF01418922.![]() ![]() ![]() |
|
H. Poincaré,
Sur Les Courbes Definies Par Les Equations Differentielles, In Oeuvres de H. Poincaré I, Gauthier-Villars, Paris, 1928.
![]() |
|
J. W. Robbin
, Topological conjugacy and structural stability for discrete dynamical systems, Bull. Amer. Math. Soc., 78 (1972)
, 923-952.
doi: 10.1090/S0002-9904-1972-13058-1.![]() ![]() ![]() |
|
C. Robinson,
Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, 2nd Edition, CRC Press, London, 1999.
![]() ![]() |