• Previous Article
    A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian
  • DCDS Home
  • This Issue
  • Next Article
    Variational properties and linear stabilities of spatial isosceles orbits in the equal-mass three-body problem
July  2017, 37(7): 4019-4034. doi: 10.3934/dcds.2017170

Typical points and families of expanding interval mappings

Centre for Mathematical Sciences, Lund University, Box 118,221 00 Lund, Sweden

Received  November 2015 Revised  March 2017 Published  April 2017

Fund Project: The author thanks D. Schnellmann for useful comments

We study parametrised families of piecewise expanding interval mappings $T_a \colon [0,1] \to [0,1]$ with absolutely continuous invariant measures $\mu_a$ and give sufficient conditions for a point $X(a)$ to be typical with respect to $(T_a, \mu_a)$ for almost all parameters a. This is similar to a result by D.Schnellmann, but with different assumptions.

Citation: Tomas Persson. Typical points and families of expanding interval mappings. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4019-4034. doi: 10.3934/dcds.2017170
References:
[1]

M. Björklund and D. Schnellmann, Almost sure equidistribution in expansive families, Indag. Math. (N.S.), 20 (2009), 167-177. doi: 10.1016/S0019-3577(09)00017-2. Google Scholar

[2]

Z. Kowalski, Invariant measure for piecewise monotonic transformation has a positive lower bound on its support, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 53-57. Google Scholar

[3]

C. Liverani, Decay of correlations for piecewise expanding maps, J. Statist. Phys., 78 (1995), 1111-1129. doi: 10.1007/BF02183704. Google Scholar

[4]

M. Rychlik, Bounded variation and invariant measures, Studia Math., 76 (1983), 69-80. Google Scholar

[5]

D. Schnellmann, Typical points for one-parameter families of piecewise expanding maps of the interval, Discrete Contin. Dyn. Syst., 31 (2011), 877-911. doi: 10.3934/dcds.2011.31.877. Google Scholar

[6]

D. Schnellmann, Law of iterated logarithm and invariance principle for one-parameter families of interval maps, Probab. Theory Related Fields, 162 (2015), 365-409. doi: 10.1007/s00440-014-0575-7. Google Scholar

[7]

G. Wagner, The ergodic behaviour of piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete, 46 (1979), 317-324. doi: 10.1007/BF00538119. Google Scholar

[8]

S. Wong, Some metric properties of piecewise monotonic mappings of the unit interval, Trans. Amer. Math. Soc., 246 (1978), 493-500. doi: 10.1090/S0002-9947-1978-0515555-9. Google Scholar

show all references

References:
[1]

M. Björklund and D. Schnellmann, Almost sure equidistribution in expansive families, Indag. Math. (N.S.), 20 (2009), 167-177. doi: 10.1016/S0019-3577(09)00017-2. Google Scholar

[2]

Z. Kowalski, Invariant measure for piecewise monotonic transformation has a positive lower bound on its support, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 53-57. Google Scholar

[3]

C. Liverani, Decay of correlations for piecewise expanding maps, J. Statist. Phys., 78 (1995), 1111-1129. doi: 10.1007/BF02183704. Google Scholar

[4]

M. Rychlik, Bounded variation and invariant measures, Studia Math., 76 (1983), 69-80. Google Scholar

[5]

D. Schnellmann, Typical points for one-parameter families of piecewise expanding maps of the interval, Discrete Contin. Dyn. Syst., 31 (2011), 877-911. doi: 10.3934/dcds.2011.31.877. Google Scholar

[6]

D. Schnellmann, Law of iterated logarithm and invariance principle for one-parameter families of interval maps, Probab. Theory Related Fields, 162 (2015), 365-409. doi: 10.1007/s00440-014-0575-7. Google Scholar

[7]

G. Wagner, The ergodic behaviour of piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete, 46 (1979), 317-324. doi: 10.1007/BF00538119. Google Scholar

[8]

S. Wong, Some metric properties of piecewise monotonic mappings of the unit interval, Trans. Amer. Math. Soc., 246 (1978), 493-500. doi: 10.1090/S0002-9947-1978-0515555-9. Google Scholar

Figure 1.  An example of a mapping T for which the assumptions in Corollary 1 are satisfied for $T_a (x) = T(ax)$, for all parameters in some interval $[1,a_1]$, $a_1 > 1$. Here we have taken $\delta = 2/5$. Assumption 6 is then that $\inf |T_a'| > 7/2$.
Figure 2.  An illustration of the action of $E_s$ with $s = 1.2$. The dashed lines show the original graph.
[1]

Daniel Schnellmann. Typical points for one-parameter families of piecewise expanding maps of the interval. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 877-911. doi: 10.3934/dcds.2011.31.877

[2]

Jiu Ding, Aihui Zhou. Absolutely continuous invariant measures for piecewise $C^2$ and expanding mappings in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 451-458. doi: 10.3934/dcds.2000.6.451

[3]

Salvador Addas-Zanata. Stability for the vertical rotation interval of twist mappings. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 631-642. doi: 10.3934/dcds.2006.14.631

[4]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[5]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[6]

Yun Yang. Horseshoes for $\mathcal{C}^{1+\alpha}$ mappings with hyperbolic measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5133-5152. doi: 10.3934/dcds.2015.35.5133

[7]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[8]

Xavier Bressaud. Expanding interval maps with intermittent behaviour, physical measures and time scales. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 517-546. doi: 10.3934/dcds.2004.11.517

[9]

Fengbo Hang, Fanghua Lin. Topology of Sobolev mappings IV. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1097-1124. doi: 10.3934/dcds.2005.13.1097

[10]

Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381

[11]

Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 191-208. doi: 10.3934/dcds.2002.8.191

[12]

Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557

[13]

Huiyan Xue, Antonella Zanna. Generating functions and volume preserving mappings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1229-1249. doi: 10.3934/dcds.2014.34.1229

[14]

Valentin Afraimovich, Maurice Courbage, Lev Glebsky. Directional complexity and entropy for lift mappings. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3385-3401. doi: 10.3934/dcdsb.2015.20.3385

[15]

Dariusz Bugajewski, Piotr Kasprzak. On mappings of higher order and their applications to nonlinear equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 627-647. doi: 10.3934/cpaa.2012.11.627

[16]

Alexei Pokrovskii, Oleg Rasskazov. Structure of index sequences for mappings with an asymptotic derivative. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 653-670. doi: 10.3934/dcds.2007.17.653

[17]

Jiawei Chen, Guangmin Wang, Xiaoqing Ou, Wenyan Zhang. Continuity of solutions mappings of parametric set optimization problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2018138

[18]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[19]

Salvador Addas-Zanata, Fábio A. Tal. Support of maximizing measures for typical $\mathcal{C}^0$ dynamics on compact manifolds. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 795-804. doi: 10.3934/dcds.2010.26.795

[20]

C. Kopf. Symbol sequences and entropy for piecewise monotone transformations with discontinuities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 299-304. doi: 10.3934/dcds.2000.6.299

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (5)
  • Cited by (1)

Other articles
by authors

[Back to Top]