\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Bonsall cone spectral radius and the approximate point spectrum

  • * Corresponding author: Aljoša Peperko

    * Corresponding author: Aljoša Peperko
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We study the Bonsall cone spectral radius and the approximate point spectrum of (in general non-linear) positively homogeneous, bounded and supremum preserving maps, defined on a max-cone in a given normed vector lattice. We prove that the Bonsall cone spectral radius of such maps is always included in its approximate point spectrum. Moreover, the approximate point spectrum always contains a (possibly trivial) interval. Our results apply to a large class of (nonlinear) max-type operators.

    We also generalize a known result that the spectral radius of a positive (linear) operator on a Banach lattice is contained in the approximate point spectrum. Under additional generalized compactness type assumptions our results imply Krein-Rutman type results.

    Mathematics Subject Classification: Primary: 47H07, 47J10, 47H10; Secondary: 47H08, 47B65, 47A10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory American Mathematical Society, Providence, 2002. doi: 10.1090/gsm/050.
      M. Akian and S. Gaubert, Policy iteration for perfect information stochastic mean payoff games with bounded first return times is strongly polynomial, preprint, arXiv: 1310.4953
      M. Akian , S. Gaubert  and  A. Hochart , Ergodicity conditions for zero-sum games, Discrete and Continuous Dynamical Systems -A, 35 (2015) , 3901-3931.  doi: 10.3934/dcds.2015.35.3901.
      M. Akian, S. Gaubert and C. Walsh, Discrete max-plus spectral theory, in Idempotent Mathematics and Mathematical Physics, G. L. Litvinov and V. P. Maslov, Eds, Contemporary Mathematics, AMS, 377 (2005), 53–77, arXiv: math.SP/0405225 doi: 10.1090/conm/377/6982.
      M. Akian, S. Gaubert and R. D. Nussbaum, A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones, preprint, arXiv: 1112.5968
      C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, A Hitchhiker's Guide Third Edition, Springer, 2006.
      C. D. Aliprantis, D. J. Brown and O. Burkinshaw, Existence and Optimality of Competitive Equilibria Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-61521-4.
      C. D. Aliprantis and O. Burkinshaw, Positive Operators Reprint of the 1985 original, Springer, Dordrecht, 2006. doi: 10.1007/978-1-4020-5008-4.
      C. D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics Second edition, Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/surv/105.
      C. D. Aliprantis and R. Tourky, Cones and Duality American Mathematical Society, Providence, 2007. doi: 10.1090/gsm/084.
      J. Appell , E. De Pascale  and  A. Vignoli , A comparison of different spectra for nonlinear operators, Nonlinear Anal., 40 (2000) , 73-90.  doi: 10.1016/S0362-546X(00)85005-1.
      J. Appell, E. De Pascale and A. Vignoli, Nonlinear Spectral Theory Walter de Gruyter GmbH and Co. KG, Berlin, 2004. doi: 10.1515/9783110199260.
      J. Appell , E. Giorgieri  and  M. Väth , Nonlinear spectral theory for homogeneous operators, Nonlinear Funct. Anal. Appl., 7 (2002) , 589-618. 
      F. L. Baccelli, G. Cohen, G. -J. Olsder and J. -P. Quadrat, Synchronization and Linearity John Wiley, Chichester, New York, 1992.
      R. B. Bapat , A max version of the Perron-Frobenius theorem, Linear Algebra Appl., 275/276 (1998) , 3-18.  doi: 10.1016/S0024-3795(97)10057-X.
      P. Butkovič, Max-linear Systems: Theory and Algorithms Springer-Verlag, London, 2010. doi: 10.1007/978-1-84996-299-5.
      P. Butkovič , S. Gaubert  and  R. A. Cuninghame-Green , Reducible spectral theory with applications to the robustness of matrices in max-algebra, SIAM J. Matrix Anal. Appl., 31 (2009) , 1412-1431.  doi: 10.1137/080731232.
      W. Feng , A new spectral theory for nonlinear operators and its applications, Abstr. Appl. Anal., 2 (1997) , 163-183.  doi: 10.1155/S1085337597000328.
      M. Furi , M. Martelli  and  A. Vignoli , Contributions to the spectral theory for nonlinear operators in Banach spaces, Ann. Pura Appl., 118 (1978) , 229-294.  doi: 10.1007/BF02415132.
      G. Gripenberg , On the definition of the cone spectral radius, Proc. Amer. Math. Soc., 143 (2015) , 1617-1625.  doi: 10.1090/S0002-9939-2014-12375-6.
      J. Gunawardena, Cycle times and fixed points of min-max functions, In G. Cohen and J. -P. Quadrat, editors, 11th International Conference on Analysis and Optimization of Systems, Springer LNCIS, 199 (1994), 266–272.
      M. de Jeu  and  M. Messerschmidt , A strong open mapping theorem for surjections from cones onto Banach spaces, Advances in Math., 259 (2014) , 43-66.  doi: 10.1016/j.aim.2014.03.008.
      V. N. Kolokoltsov and V. P. Maslov, Idempotent Analysis and Its Applications Kluwer Acad. Publ., 1997. doi: 10.1007/978-94-015-8901-7.
      B. Lemmens and R. D. Nussbaum, Continuity of the cone spectral radius, Proc. Amer. Math. Soc., 141 (2013), 2741–2754, arXiv: 1107.4532. doi: 10.1090/S0002-9939-2013-11520-0.
      B. Lemmens and R. D. Nussbaum, Nonlinear Perron-Frobenius Theory Cambridge University Press, 2012. doi: 10.1017/CBO9781139026079.
      J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I and II A reprint of the 1977 and 1979 editions, Springer, 1996.
      B. Lins  and  R. D. Nussbaum , Denjoy-Wolff theorems, Hilbert metric nonexpansive maps on reproduction-decimation operators, J. Funct. Anal., 254 (2008) , 2365-2386.  doi: 10.1016/j.jfa.2008.02.001.
      G. L. Litvinov , The Maslov dequantization, idempotent and tropical mathematics: A brief introduction, J. Math. Sci., 140 (2007) , 426-444.  doi: 10.1007/s10958-007-0450-5.
      G. L. Litvinov, V. P. Maslov and G. B. Shpiz, Idempotent functional analysis: An algebraic approach, Math Notes, 69 (2001), 696–729, arXiv: math.FA/0009128. doi: 10.1023/A:1010266012029.
      G. L. Litvinov and V. P. Maslov (eds.), Idempotent mathematics and mathematical physics, Contemp. Math., Amer. Math. Soc., Providence, RI, 377 (2005), 1–17. doi: 10.1090/conm/377/6982.
      J. Mallet-Paret  and  R. D. Nussbaum , Eigenvalues for a class of homogeneous cone maps arising from max-plus operators, Discrete and Continuous Dynamical Systems, 8 (2002) , 519-562.  doi: 10.3934/dcds.2002.8.519.
      J. Mallet-Paret  and  R. D. Nussbaum , Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory and Applications, 7 (2010) , 103-143.  doi: 10.1007/s11784-010-0010-3.
      J. Mallet-Paret  and  R. D. Nussbaum , Inequivalent measures of noncompactness, Ann. Mat. Pura Appl., 190 (2011) , 453-488.  doi: 10.1007/s10231-010-0158-x.
      J. Mallet-Paret  and  R. D. Nussbaum , Inequivalent measures of noncompactness and the radius of the essential radius, Proc. Amer. Math. Soc., 139 (2011) , 917-930.  doi: 10.1090/S0002-9939-2010-10511-7.
      V. Müller  and  A. Peperko , Generalized spectral radius and its max algebra version, Linear Algebra Appl, Linear Algebra Appl., 439 (2013) , 1006-1016.  doi: 10.1016/j.laa.2012.09.024.
      V. Müller  and  A. Peperko , On the spectrum in max-algebra, Linear Algebra Appl., 485 (2015) , 250-266.  doi: 10.1016/j.laa.2015.07.013.
      R. D. Nussbaum, Eigenvalues of nonlinear operators and the linear Krein-Rutman, in: Fixed Point Theory (Sherbrooke, Quebec, 1980), E. Fadell and G. Fournier, editors, Lecture notes in Mathematics, Springer-Verlag, Berlin, 886 (1981), 309–330.
      R. D. Nussbaum , Periodic points of positive linear operators and Perron-Frobenius operators, Integral Equations Operator Theory, 39 (2001) , 41-97.  doi: 10.1007/BF01192149.
      L. Pachter and B. Sturmfels (eds.), Algebraic statistics for computational biology, Cambridge Univ. Press, New York, (2005), 125–159. doi: 10.1017/CBO9780511610684. 007.
      P. Santucci  and  M. Väth , On the definition of eigenvalues of nonlinear operators, Nonlinear Anal., 40 (2000) , 565-576.  doi: 10.1016/S0362-546X(00)85034-8.
      G. B. Shpiz , An eigenvector existence theorem in idempotent analysis, Mathematical Notes, 82 (2007) , 410-417.  doi: 10.1134/S0001434607090131.
      W. Wnuk, Banach Lattices with Order Continuous Norms Polish Scientific Publ., PWN, Warszawa, 1999.
  • 加载中
SHARE

Article Metrics

HTML views(2050) PDF downloads(192) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return