December  2017, 37(12): 6165-6181. doi: 10.3934/dcds.2017266

$\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem

1. 

Normandie Univ, UNIHAVRE, LMAH, 76600 Le Havre, France

2. 

Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK

3. 

Universitá degli Studi della Campania "Luigi Vanvitelli", Scuola Politecnica e delle Scienze di Base, Dipartimento di Matematica e Fisica, Viale Lincoln, 5, 81100 Caserta, Italy

‡ Corresponding author

† N.K. has been partially financially supported by the EPSRC grant EP/N017412/1

Received  December 2016 Revised  July 2017 Published  August 2017

For
$\mathrm{H}∈ C^2(\mathbb{R}^{N\times n})$
and
$u :Ω \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^N$
, consider the system
$ \label{1}\mathrm{A}_∞ u\, :=\,\Big(\mathrm{H}_P \otimes \mathrm{H}_P + \mathrm{H}[\mathrm{H}_P]^\bot \mathrm{H}_{PP}\Big)(\text{D} u):\text{D}^2u\, =\,0. \tag{1}$
We construct
$\mathcal{D}$
-solutions to the Dirichlet problem for (1), an apt notion of generalised solutions recently proposed for fully nonlinear systems. Our
$\mathcal{D}$
-solutions are
$W^{1,∞}$
-submersions and are obtained without any convexity hypotheses for
$\mathrm{H}$
, through a result of independent interest involving existence of strong solutions to the singular value problem for general dimensions
$n≠ N$
.
Citation: Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266
References:
[1]

H. Abugirda and N. Katzourakis, Existence of 1D vectorial Absolute Minimisers in $L^∞$ under minimal assumptions, Proceedings of the AMS, 145 (2017), 2567-2575. doi: 10.1090/proc/13421. Google Scholar

[2]

L. Ambrosio and J. Malý, Very weak notions of differentiability, Proceedings of the Royal Society of Edinburgh A, 137 (2007), 447-455. doi: 10.1017/S0308210505001344. Google Scholar

[3]

G. Aronsson, Minimization problems for the functional $sup_x \mathcal{F}(x, f(x), f'(x))$, Arkiv für Mat., 6 (1965), 33-53. doi: 10.1007/BF02591326. Google Scholar

[4]

G. Aronsson, Minimization problems for the functional $sup_x \mathcal{F}(x, f(x), f'(x))$ Ⅱ, Arkiv für Mat., 6 (1966), 409-431. doi: 10.1007/BF02590964. Google Scholar

[5]

G. Aronsson, Extension of functions satisfying Lipschitz conditions, Arkiv für Mat., 6 (1967), 551-561. doi: 10.1007/BF02591928. Google Scholar

[6]

G. Aronsson, On the partial differential equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} = 0$, Arkiv für Mat., 7 (1968), 395-425. doi: 10.1007/BF02590989. Google Scholar

[7]

G. Aronsson, Minimization problems for the functional $sup_x \mathcal{F}(x, f(x), f'(x))$ Ⅲ, Arkiv für Mat., 7 (1969), 509-512. doi: 10.1007/BF02590888. Google Scholar

[8]

G. Aronsson, On certain singular solutions of the partial differential equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} = 0$, Manuscripta Math, 47 (1984), 133-151. doi: 10.1007/BF01174590. Google Scholar

[9]

G. Aronsson, Construction of singular solutions to the $p$-harmonic equation and its limit equation for $p=∞$, Manuscripta Math, 56 (1986), 135-158. doi: 10.1007/BF01172152. Google Scholar

[10]

G. AronssonM. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bulletin of the AMS, New Series, 41 (2004), 439-505. doi: 10.1090/S0273-0979-04-01035-3. Google Scholar

[11]

E. N. BarronL. C. Evans and R. Jensen, The infinity Laplacian, Aronsson's equation and their generalizations, Trans. Amer. Math. Soc., 360 (2008), 77-101. doi: 10.1090/S0002-9947-07-04338-3. Google Scholar

[12]

E. N. BarronR. Jensen and C. Wang, The Euler equation and absolute minimizers of $L^{∞}$ functionals, Arch. Rational Mech. Analysis, 157 (2001), 255-283. doi: 10.1007/PL00004239. Google Scholar

[13]

E. N. BarronR. Jensen and C. Wang, Lower semicontinuity of $L^{∞}$ functionals, Ann. I. H. Poincaré AN, 18 (2001), 495-517. doi: 10.1016/S0294-1449(01)00070-1. Google Scholar

[14]

A. C. BarrosoG. Croce and A. Ribeiro, Sufficient conditions for existence of solutions to vectorial differential inclusions and applications, Houston J. Math., 39 (2013), 929-967. Google Scholar

[15]

C. Le Bris and P. L. Lions, Renormalized solutions of some transport equations with partially $W^{1,1}$ velocities and applications, Ann. di Mat. Pura ed Appl., 183 (2004), 97-130. doi: 10.1007/s10231-003-0082-4. Google Scholar

[16]

L. Capogna and A. Raich, An Aronsson type approach to extremal quasiconformal mappings, Journal of Differential Equations, 253 (2012), 851-877. doi: 10.1016/j.jde.2012.04.015. Google Scholar

[17]

C. Castaing, P. R. de Fitte and M. Valadier, Young Measures on Topological spaces with Applications in Control Theory and Probability Theory, Mathematics and Its Applications (Kluwer Academic Publishers, Academic Press), Academic Press, 2004. doi: 10.1007/1-4020-1964-5. Google Scholar

[18]

M. G. Crandall, A visit with the 1-Laplacian, in Calculus of Variations and Non-Linear Partial Differential Equations, 75-122, Springer Lecture notes 1927, Springer, Berlin, 2008. doi: 10.1007/978-3-540-75914-0_3. Google Scholar

[19]

G. Croce, A differential inclusion: The case of an isotropic set, ESAIM Control Optim. Calc. Var., 11 (2005), 122-138. doi: 10.1051/cocv:2004035. Google Scholar

[20]

B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd edition, Applied Mathematical Sciences, Springer, 2008. Google Scholar

[21]

B. Dacorogna and P. Marcellini, Cauchy-Dirichlet problem for first order nonlinear systems, Journal of Functional Analysis, 152 (1998), 404-446. doi: 10.1006/jfan.1997.3172. Google Scholar

[22]

B. Dacorogna and P. Marcellini, Implicit Partial Differential Equations, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 1999. doi: 10.1007/978-1-4612-1562-2. Google Scholar

[23]

B. Dacorogna and G. Pisante, A general existence theorem for differential inclusions in the vector valued case, Portugaliae Mathematica, 62 (2005), 421-436. Google Scholar

[24]

B. DacorognaG. Pisante and A. M. Ribeiro, On non quasiconvex problems of the calculus of variations, Discrete Contin. Dyn. Syst., 13 (2005), 961-983. doi: 10.3934/dcds.2005.13.961. Google Scholar

[25]

B. Dacorogna and A. M. Ribeiro, Existence of solutions for some implicit partial differential equations and applications to variational integrals involving quasi-affine functions, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 907-921. doi: 10.1017/S0308210500003541. Google Scholar

[26]

B. Dacorogna and C. Tanteri, On the different convex hulls of sets involving singular values, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1261-1280. doi: 10.1017/S0308210500027311. Google Scholar

[27]

R. E. Edwards, Functional Analysis: Theory and Applications, Corrected reprint of the 1965 original. Dover Publications, Inc., New York, 1995. Google Scholar

[28]

L. C. Evans, Partial Differential Equations, AMS Graduate Studies in Mathematics, 2nd edition, 2010. doi: 10.1090/gsm/019. Google Scholar

[29]

L. C. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions, Studies in advanced mathematics, CRC press, 1992. Google Scholar

[30]

L. C. Florescu and C. Godet-Thobie, Young Measures and Compactness in Metric Spaces, De Gruyter, 2012. doi: 10.1515/9783110280517. Google Scholar

[31]

I. Fonseca and G. Leoni, Modern methods in the Calculus of Variations: $L^p$ Spaces, Springer Monographs in Mathematics, 2007. Google Scholar

[32]

R. A. Horn and Ch. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2013. Google Scholar

[33]

N. Katzourakis, $L^∞$-variational problems for maps and the Aronsson PDE system, J. Differential Equations, 253 (2012), 2123-2139. doi: 10.1016/j.jde.2012.05.012. Google Scholar

[34]

N. Katzourakis, $∞$-minimal submanifolds, Proceedings of the AMS, 142 (2014), 2797-2811. doi: 10.1090/S0002-9939-2014-12039-9. Google Scholar

[35]

N. Katzourakis, On the structure of $∞$-harmonic maps, Communications in PDE, 39 (2014), 2091-2124. doi: 10.1080/03605302.2014.920351. Google Scholar

[36]

N. Katzourakis, Explicit $2D$ $∞$-harmonic maps whose interfaces have junctions and corners, Comptes Rendus Acad. Sci. Paris, Ser. I, 351 (2013), 677-680. doi: 10.1016/j.crma.2013.07.028. Google Scholar

[37]

N. Katzourakis, Optimal $∞$-quasiconformal immersions, ESAIM Control, Opt. and Calc. Var., 21 (2015), 561-582. doi: 10.1051/cocv/2014038. Google Scholar

[38]

N. Katzourakis, Nonuniqueness in vector-valued calculus of variations in $L^∞$ and some linear elliptic systems, Comm. on Pure and Appl. Anal., 14 (2015), 313-327. doi: 10.3934/cpaa.2015.14.313. Google Scholar

[39]

N. Katzourakis, An Introduction to Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in $L^∞$, Springer Briefs in Mathematics, 2015. doi: 10.1007/978-3-319-12829-0. Google Scholar

[40]

N. Katzourakis, Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems, Journal of Differential Equations, 263 (2017), 641-686. doi: 10.1016/j.jde.2017.02.048. Google Scholar

[41]

N. Katzourakis, Absolutely minimising generalised solutions to the equations of vectorial Calculus of Variations in $L^∞$, Calculus of Variations and PDE, 56 (2017), 1-25. doi: 10.1007/s00526-016-1099-z. Google Scholar

[42]

N. Katzourakis, A new characterisation of $∞$-Harmonic and $p$-Harmonic maps via affine variations in $L^∞$, Electronic Journal of Differential Equations, 2017 (2017), 1-19. Google Scholar

[43]

N. Katzourakis, Solutions of vectorial Hamilton-Jacobi equations are rank-one Absolute Minimisers in $L^∞$, Advances in Nonlinear Analysis, in press.Google Scholar

[44]

N. Katzourakis, Weak versus $\mathcal{D}$-solutions to linear hyperbolic first order systems with constant coefficients, preprint, arXiv: 1507.03042.Google Scholar

[45]

N. Katzourakis and J. Manfredi, Remarks on the validity of the maximum principle for the $∞$-Laplacian, Le Matematiche, 71 (2016), 63-74. Google Scholar

[46]

N. Katzourakis and T. Pryer, On the numerical approximation of $∞$-Harmonic mappings Nonlinear Differential Equations and Applications, 23 (2016), Art. 51, 23 pp. doi: 10.1007/s00030-016-0415-9. Google Scholar

[47]

B. Kirchheim, Rigidity and geometry of microstructures, in Issue 16 of Lecture notes, Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig, 2003.Google Scholar

[48]

B. Kirchheim, Deformations with finitely many gradients and stability of convex hulls, Comptes Rendus de l'Académie des Sciences, Séries I, Mathematics, 332 (2001), 289-294. doi: 10.1016/S0764-4442(00)01792-4. Google Scholar

[49]

S. Müller and V. Šverák, Attainment results for the two-well problem by convex integration, Geometric analysis and the calculus of variations, (1996), 239-251. Google Scholar

[50]

S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. of Math., 157 (2003), 715-742. doi: 10.4007/annals.2003.157.715. Google Scholar

[51]

P. Pedregal, Parametrized Measures and Variational Principles Birkhäuser, 1997. doi: 10.1007/978-3-0348-8886-8. Google Scholar

[52]

G. Pisante, Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians, SIAM J. Math. Anal., 36 (2004), 186-203. doi: 10.1137/S0036141003426902. Google Scholar

[53]

S. Sheffield and C. K. Smart, Vector-valued optimal Lipschitz extensions, Comm. Pure Appl. Math., 65 (2012), 128-154. doi: 10.1002/cpa.20391. Google Scholar

[54]

M. Valadier, Young measures, Methods of Nonconvex Analysis, 1446 (1990), 152-188. doi: 10.1007/BFb0084935. Google Scholar

show all references

References:
[1]

H. Abugirda and N. Katzourakis, Existence of 1D vectorial Absolute Minimisers in $L^∞$ under minimal assumptions, Proceedings of the AMS, 145 (2017), 2567-2575. doi: 10.1090/proc/13421. Google Scholar

[2]

L. Ambrosio and J. Malý, Very weak notions of differentiability, Proceedings of the Royal Society of Edinburgh A, 137 (2007), 447-455. doi: 10.1017/S0308210505001344. Google Scholar

[3]

G. Aronsson, Minimization problems for the functional $sup_x \mathcal{F}(x, f(x), f'(x))$, Arkiv für Mat., 6 (1965), 33-53. doi: 10.1007/BF02591326. Google Scholar

[4]

G. Aronsson, Minimization problems for the functional $sup_x \mathcal{F}(x, f(x), f'(x))$ Ⅱ, Arkiv für Mat., 6 (1966), 409-431. doi: 10.1007/BF02590964. Google Scholar

[5]

G. Aronsson, Extension of functions satisfying Lipschitz conditions, Arkiv für Mat., 6 (1967), 551-561. doi: 10.1007/BF02591928. Google Scholar

[6]

G. Aronsson, On the partial differential equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} = 0$, Arkiv für Mat., 7 (1968), 395-425. doi: 10.1007/BF02590989. Google Scholar

[7]

G. Aronsson, Minimization problems for the functional $sup_x \mathcal{F}(x, f(x), f'(x))$ Ⅲ, Arkiv für Mat., 7 (1969), 509-512. doi: 10.1007/BF02590888. Google Scholar

[8]

G. Aronsson, On certain singular solutions of the partial differential equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} = 0$, Manuscripta Math, 47 (1984), 133-151. doi: 10.1007/BF01174590. Google Scholar

[9]

G. Aronsson, Construction of singular solutions to the $p$-harmonic equation and its limit equation for $p=∞$, Manuscripta Math, 56 (1986), 135-158. doi: 10.1007/BF01172152. Google Scholar

[10]

G. AronssonM. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bulletin of the AMS, New Series, 41 (2004), 439-505. doi: 10.1090/S0273-0979-04-01035-3. Google Scholar

[11]

E. N. BarronL. C. Evans and R. Jensen, The infinity Laplacian, Aronsson's equation and their generalizations, Trans. Amer. Math. Soc., 360 (2008), 77-101. doi: 10.1090/S0002-9947-07-04338-3. Google Scholar

[12]

E. N. BarronR. Jensen and C. Wang, The Euler equation and absolute minimizers of $L^{∞}$ functionals, Arch. Rational Mech. Analysis, 157 (2001), 255-283. doi: 10.1007/PL00004239. Google Scholar

[13]

E. N. BarronR. Jensen and C. Wang, Lower semicontinuity of $L^{∞}$ functionals, Ann. I. H. Poincaré AN, 18 (2001), 495-517. doi: 10.1016/S0294-1449(01)00070-1. Google Scholar

[14]

A. C. BarrosoG. Croce and A. Ribeiro, Sufficient conditions for existence of solutions to vectorial differential inclusions and applications, Houston J. Math., 39 (2013), 929-967. Google Scholar

[15]

C. Le Bris and P. L. Lions, Renormalized solutions of some transport equations with partially $W^{1,1}$ velocities and applications, Ann. di Mat. Pura ed Appl., 183 (2004), 97-130. doi: 10.1007/s10231-003-0082-4. Google Scholar

[16]

L. Capogna and A. Raich, An Aronsson type approach to extremal quasiconformal mappings, Journal of Differential Equations, 253 (2012), 851-877. doi: 10.1016/j.jde.2012.04.015. Google Scholar

[17]

C. Castaing, P. R. de Fitte and M. Valadier, Young Measures on Topological spaces with Applications in Control Theory and Probability Theory, Mathematics and Its Applications (Kluwer Academic Publishers, Academic Press), Academic Press, 2004. doi: 10.1007/1-4020-1964-5. Google Scholar

[18]

M. G. Crandall, A visit with the 1-Laplacian, in Calculus of Variations and Non-Linear Partial Differential Equations, 75-122, Springer Lecture notes 1927, Springer, Berlin, 2008. doi: 10.1007/978-3-540-75914-0_3. Google Scholar

[19]

G. Croce, A differential inclusion: The case of an isotropic set, ESAIM Control Optim. Calc. Var., 11 (2005), 122-138. doi: 10.1051/cocv:2004035. Google Scholar

[20]

B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd edition, Applied Mathematical Sciences, Springer, 2008. Google Scholar

[21]

B. Dacorogna and P. Marcellini, Cauchy-Dirichlet problem for first order nonlinear systems, Journal of Functional Analysis, 152 (1998), 404-446. doi: 10.1006/jfan.1997.3172. Google Scholar

[22]

B. Dacorogna and P. Marcellini, Implicit Partial Differential Equations, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 1999. doi: 10.1007/978-1-4612-1562-2. Google Scholar

[23]

B. Dacorogna and G. Pisante, A general existence theorem for differential inclusions in the vector valued case, Portugaliae Mathematica, 62 (2005), 421-436. Google Scholar

[24]

B. DacorognaG. Pisante and A. M. Ribeiro, On non quasiconvex problems of the calculus of variations, Discrete Contin. Dyn. Syst., 13 (2005), 961-983. doi: 10.3934/dcds.2005.13.961. Google Scholar

[25]

B. Dacorogna and A. M. Ribeiro, Existence of solutions for some implicit partial differential equations and applications to variational integrals involving quasi-affine functions, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 907-921. doi: 10.1017/S0308210500003541. Google Scholar

[26]

B. Dacorogna and C. Tanteri, On the different convex hulls of sets involving singular values, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1261-1280. doi: 10.1017/S0308210500027311. Google Scholar

[27]

R. E. Edwards, Functional Analysis: Theory and Applications, Corrected reprint of the 1965 original. Dover Publications, Inc., New York, 1995. Google Scholar

[28]

L. C. Evans, Partial Differential Equations, AMS Graduate Studies in Mathematics, 2nd edition, 2010. doi: 10.1090/gsm/019. Google Scholar

[29]

L. C. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions, Studies in advanced mathematics, CRC press, 1992. Google Scholar

[30]

L. C. Florescu and C. Godet-Thobie, Young Measures and Compactness in Metric Spaces, De Gruyter, 2012. doi: 10.1515/9783110280517. Google Scholar

[31]

I. Fonseca and G. Leoni, Modern methods in the Calculus of Variations: $L^p$ Spaces, Springer Monographs in Mathematics, 2007. Google Scholar

[32]

R. A. Horn and Ch. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2013. Google Scholar

[33]

N. Katzourakis, $L^∞$-variational problems for maps and the Aronsson PDE system, J. Differential Equations, 253 (2012), 2123-2139. doi: 10.1016/j.jde.2012.05.012. Google Scholar

[34]

N. Katzourakis, $∞$-minimal submanifolds, Proceedings of the AMS, 142 (2014), 2797-2811. doi: 10.1090/S0002-9939-2014-12039-9. Google Scholar

[35]

N. Katzourakis, On the structure of $∞$-harmonic maps, Communications in PDE, 39 (2014), 2091-2124. doi: 10.1080/03605302.2014.920351. Google Scholar

[36]

N. Katzourakis, Explicit $2D$ $∞$-harmonic maps whose interfaces have junctions and corners, Comptes Rendus Acad. Sci. Paris, Ser. I, 351 (2013), 677-680. doi: 10.1016/j.crma.2013.07.028. Google Scholar

[37]

N. Katzourakis, Optimal $∞$-quasiconformal immersions, ESAIM Control, Opt. and Calc. Var., 21 (2015), 561-582. doi: 10.1051/cocv/2014038. Google Scholar

[38]

N. Katzourakis, Nonuniqueness in vector-valued calculus of variations in $L^∞$ and some linear elliptic systems, Comm. on Pure and Appl. Anal., 14 (2015), 313-327. doi: 10.3934/cpaa.2015.14.313. Google Scholar

[39]

N. Katzourakis, An Introduction to Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in $L^∞$, Springer Briefs in Mathematics, 2015. doi: 10.1007/978-3-319-12829-0. Google Scholar

[40]

N. Katzourakis, Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems, Journal of Differential Equations, 263 (2017), 641-686. doi: 10.1016/j.jde.2017.02.048. Google Scholar

[41]

N. Katzourakis, Absolutely minimising generalised solutions to the equations of vectorial Calculus of Variations in $L^∞$, Calculus of Variations and PDE, 56 (2017), 1-25. doi: 10.1007/s00526-016-1099-z. Google Scholar

[42]

N. Katzourakis, A new characterisation of $∞$-Harmonic and $p$-Harmonic maps via affine variations in $L^∞$, Electronic Journal of Differential Equations, 2017 (2017), 1-19. Google Scholar

[43]

N. Katzourakis, Solutions of vectorial Hamilton-Jacobi equations are rank-one Absolute Minimisers in $L^∞$, Advances in Nonlinear Analysis, in press.Google Scholar

[44]

N. Katzourakis, Weak versus $\mathcal{D}$-solutions to linear hyperbolic first order systems with constant coefficients, preprint, arXiv: 1507.03042.Google Scholar

[45]

N. Katzourakis and J. Manfredi, Remarks on the validity of the maximum principle for the $∞$-Laplacian, Le Matematiche, 71 (2016), 63-74. Google Scholar

[46]

N. Katzourakis and T. Pryer, On the numerical approximation of $∞$-Harmonic mappings Nonlinear Differential Equations and Applications, 23 (2016), Art. 51, 23 pp. doi: 10.1007/s00030-016-0415-9. Google Scholar

[47]

B. Kirchheim, Rigidity and geometry of microstructures, in Issue 16 of Lecture notes, Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig, 2003.Google Scholar

[48]

B. Kirchheim, Deformations with finitely many gradients and stability of convex hulls, Comptes Rendus de l'Académie des Sciences, Séries I, Mathematics, 332 (2001), 289-294. doi: 10.1016/S0764-4442(00)01792-4. Google Scholar

[49]

S. Müller and V. Šverák, Attainment results for the two-well problem by convex integration, Geometric analysis and the calculus of variations, (1996), 239-251. Google Scholar

[50]

S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. of Math., 157 (2003), 715-742. doi: 10.4007/annals.2003.157.715. Google Scholar

[51]

P. Pedregal, Parametrized Measures and Variational Principles Birkhäuser, 1997. doi: 10.1007/978-3-0348-8886-8. Google Scholar

[52]

G. Pisante, Sufficient conditions for the existence of viscosity solutions for nonconvex Hamiltonians, SIAM J. Math. Anal., 36 (2004), 186-203. doi: 10.1137/S0036141003426902. Google Scholar

[53]

S. Sheffield and C. K. Smart, Vector-valued optimal Lipschitz extensions, Comm. Pure Appl. Math., 65 (2012), 128-154. doi: 10.1002/cpa.20391. Google Scholar

[54]

M. Valadier, Young measures, Methods of Nonconvex Analysis, 1446 (1990), 152-188. doi: 10.1007/BFb0084935. Google Scholar

[1]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[2]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[3]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[4]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks & Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1

[5]

Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621

[6]

Francesca Papalini. Strongly nonlinear multivalued systems involving singular $\Phi$-Laplacian operators. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1025-1040. doi: 10.3934/cpaa.2010.9.1025

[7]

Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015

[8]

Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084

[9]

Chuanqiang Chen. On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3383-3402. doi: 10.3934/dcds.2014.34.3383

[10]

Luisa Fattorusso, Antonio Tarsia. Regularity in Campanato spaces for solutions of fully nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1307-1323. doi: 10.3934/dcds.2011.31.1307

[11]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[12]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[13]

Chris Guiver. The generalised singular perturbation approximation for bounded real and positive real control systems. Mathematical Control & Related Fields, 2019, 9 (2) : 313-350. doi: 10.3934/mcrf.2019016

[14]

Alberto Cabada, J. Ángel Cid. Heteroclinic solutions for non-autonomous boundary value problems with singular $\Phi$-Laplacian operators. Conference Publications, 2009, 2009 (Special) : 118-122. doi: 10.3934/proc.2009.2009.118

[15]

Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019045

[16]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[17]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[18]

Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations & Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015

[19]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[20]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (18)
  • Cited by (1)

[Back to Top]