February  2018, 38(2): 547-561. doi: 10.3934/dcds.2018024

Nonradial least energy solutions of the p-Laplace elliptic equations

Department of Mathematics, Faculty of Science and Engineering, Saga University, Saga, 840-8502, Japan

Received  April 2017 Revised  August 2017 Published  February 2018

Fund Project: This work was supported by JSPS KAKENHI Grant Number 16K05236.

We study the p-Laplace elliptic equations in the unit ball under the Dirichlet boundary condition. We call u a least energy solution if it is a minimizer of the Lagrangian functional on the Nehari manifold. A least energy solution becomes a positive solution. Assume that the nonlinear term is radial and it vanishes in $|x| <a$ and it is positive in $a<|x|<1$. We prove that if a is close enough to 1, then no least energy solution is radial. Therefore there exist both a positive radial solution and a positive nonradial solution.

Citation: Ryuji Kajikiya. Nonradial least energy solutions of the p-Laplace elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 547-561. doi: 10.3934/dcds.2018024
References:
[1]

M. Badiale and E. Serra, Multiplicity results for the supercritical Hénon equation, Adv. Nonlinear Stud., 4 (2004), 453-467. doi: 10.1515/ans-2004-0406.

[2]

V. BarutelloS. Secchi and E. Serra, A note on the radial solutions for the supercritical Hénon equation, J. Math. Anal. Appl., 341 (2008), 720-728. doi: 10.1016/j.jmaa.2007.10.052.

[3]

J. Byeon and Z.-Q. Wang, On the Hénon equation: asymptotic profile of ground states, Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 803-828. doi: 10.1016/j.anihpc.2006.04.001.

[4]

J. Byeon and Z.-Q. Wang, On the Hénon equation: Asymptotic profile of ground states, Ⅱ, J. Differential Equations, 216 (2005), 78-108. doi: 10.1016/j.jde.2005.02.018.

[5]

M. CalanchiS. Secchi and E. Terraneo, Multiple solutions for a Hénon-like equation on the annulus, J. Differential Equations, 245 (2008), 1507-1525. doi: 10.1016/j.jde.2008.06.018.

[6]

D. Cao and S. Peng, The asymptotic behaviour of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17. doi: 10.1016/S0022-247X(02)00292-5.

[7]

J.-L. Chern and C.-S. Lin, The symmetry of least-energy solutions for semilinear elliptic equations, J. Differential Equations, 187 (2003), 240-268. doi: 10.1016/S0022-0396(02)00080-3.

[8]

K. Deimling, Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.

[9]

P. Drábek and J. Milota, Methods of Nonlinear Analysis: Applications to Differential Equations Second edition, Birkhäuser, Berlin, 2013.

[10]

P. EspositoA. Pistoia and J. Wei, Concentrating solutions for the Hénon equation in $\mathbb{R}^2$, J. Anal. Math., 100 (2006), 249-280. doi: 10.1007/BF02916763.

[11]

N. Hirano, Existence of positive solutions for the Hénon equation involving critical Sobolev terms, J. Differential Equations, 247 (2009), 1311-1333. doi: 10.1016/j.jde.2009.06.008.

[12]

R. Kajikiya, Non-even least energy solutions of the Emden-Fowler equation, Proc. Amer. Math. Soc., 140 (2012), 1353-1362. doi: 10.1090/S0002-9939-2011-11172-9.

[13]

R. Kajikiya, Non-radial least energy solutions of the generalized Hénon equation, J. Differential Equations, 252 (2012), 1987-2003. doi: 10.1016/j.jde.2011.08.032.

[14]

R. Kajikiya, Nonradial positive solutions of the p-Laplace Emden-Fowler equation with sign-changing weight, Mathematische Nachrichten, 289 (2016), 290-299. doi: 10.1002/mana.201500103.

[15]

R. Kajikiya, Symmetric and asymmetric solutions of p-Laplace elliptic equations in hollow domains, To appear in Adv. Nonlinear Stud.

[16]

R. A. Moore and Z. Nehari, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc., 93 (1959), 30-52. doi: 10.1090/S0002-9947-1959-0111897-8.

[17]

R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30. doi: 10.1007/BF01941322.

[18]

A. Pistoia and E. Serra, Multi-peak solutions for the Hénon equation with slightly subcritical growth, Math. Z., 256 (2007), 75-97. doi: 10.1007/s00209-006-0060-9.

[19]

P. Pucci and J. Serrin, The Maximum Principle Birkhäuser, Berlin, 2007.

[20]

E. Serra, Non radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Differential Equations, 23 (2005), 301-326. doi: 10.1007/s00526-004-0302-9.

[21]

D. SmetsM. Willem and J. Su, Non-radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002), 467-480. doi: 10.1142/S0219199702000725.

[22]

P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations, 8 (1983), 773-817. doi: 10.1080/03605308308820285.

[23]

J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl Math Optim, 12 (1984), 191-202. doi: 10.1007/BF01449041.

[24]

E. Zeidler, Applied Functional Analysis: Main Principles and Their Applications Springer, New York, 1995.

show all references

References:
[1]

M. Badiale and E. Serra, Multiplicity results for the supercritical Hénon equation, Adv. Nonlinear Stud., 4 (2004), 453-467. doi: 10.1515/ans-2004-0406.

[2]

V. BarutelloS. Secchi and E. Serra, A note on the radial solutions for the supercritical Hénon equation, J. Math. Anal. Appl., 341 (2008), 720-728. doi: 10.1016/j.jmaa.2007.10.052.

[3]

J. Byeon and Z.-Q. Wang, On the Hénon equation: asymptotic profile of ground states, Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 803-828. doi: 10.1016/j.anihpc.2006.04.001.

[4]

J. Byeon and Z.-Q. Wang, On the Hénon equation: Asymptotic profile of ground states, Ⅱ, J. Differential Equations, 216 (2005), 78-108. doi: 10.1016/j.jde.2005.02.018.

[5]

M. CalanchiS. Secchi and E. Terraneo, Multiple solutions for a Hénon-like equation on the annulus, J. Differential Equations, 245 (2008), 1507-1525. doi: 10.1016/j.jde.2008.06.018.

[6]

D. Cao and S. Peng, The asymptotic behaviour of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1-17. doi: 10.1016/S0022-247X(02)00292-5.

[7]

J.-L. Chern and C.-S. Lin, The symmetry of least-energy solutions for semilinear elliptic equations, J. Differential Equations, 187 (2003), 240-268. doi: 10.1016/S0022-0396(02)00080-3.

[8]

K. Deimling, Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.

[9]

P. Drábek and J. Milota, Methods of Nonlinear Analysis: Applications to Differential Equations Second edition, Birkhäuser, Berlin, 2013.

[10]

P. EspositoA. Pistoia and J. Wei, Concentrating solutions for the Hénon equation in $\mathbb{R}^2$, J. Anal. Math., 100 (2006), 249-280. doi: 10.1007/BF02916763.

[11]

N. Hirano, Existence of positive solutions for the Hénon equation involving critical Sobolev terms, J. Differential Equations, 247 (2009), 1311-1333. doi: 10.1016/j.jde.2009.06.008.

[12]

R. Kajikiya, Non-even least energy solutions of the Emden-Fowler equation, Proc. Amer. Math. Soc., 140 (2012), 1353-1362. doi: 10.1090/S0002-9939-2011-11172-9.

[13]

R. Kajikiya, Non-radial least energy solutions of the generalized Hénon equation, J. Differential Equations, 252 (2012), 1987-2003. doi: 10.1016/j.jde.2011.08.032.

[14]

R. Kajikiya, Nonradial positive solutions of the p-Laplace Emden-Fowler equation with sign-changing weight, Mathematische Nachrichten, 289 (2016), 290-299. doi: 10.1002/mana.201500103.

[15]

R. Kajikiya, Symmetric and asymmetric solutions of p-Laplace elliptic equations in hollow domains, To appear in Adv. Nonlinear Stud.

[16]

R. A. Moore and Z. Nehari, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc., 93 (1959), 30-52. doi: 10.1090/S0002-9947-1959-0111897-8.

[17]

R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30. doi: 10.1007/BF01941322.

[18]

A. Pistoia and E. Serra, Multi-peak solutions for the Hénon equation with slightly subcritical growth, Math. Z., 256 (2007), 75-97. doi: 10.1007/s00209-006-0060-9.

[19]

P. Pucci and J. Serrin, The Maximum Principle Birkhäuser, Berlin, 2007.

[20]

E. Serra, Non radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Differential Equations, 23 (2005), 301-326. doi: 10.1007/s00526-004-0302-9.

[21]

D. SmetsM. Willem and J. Su, Non-radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002), 467-480. doi: 10.1142/S0219199702000725.

[22]

P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations, 8 (1983), 773-817. doi: 10.1080/03605308308820285.

[23]

J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl Math Optim, 12 (1984), 191-202. doi: 10.1007/BF01449041.

[24]

E. Zeidler, Applied Functional Analysis: Main Principles and Their Applications Springer, New York, 1995.

[1]

Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055

[2]

Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237

[3]

Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177

[4]

Sihem Guerarra. Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation AXA*=B. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 15-22. doi: 10.3934/naco.2019002

[5]

Antonio Greco, Giovanni Porru. Optimization problems for the energy integral of p-Laplace equations. Conference Publications, 2013, 2013 (special) : 301-310. doi: 10.3934/proc.2013.2013.301

[6]

Shun Kodama. A concentration phenomenon of the least energy solution to non-autonomous elliptic problems with a totally degenerate potential. Communications on Pure & Applied Analysis, 2017, 16 (2) : 671-698. doi: 10.3934/cpaa.2017033

[7]

Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857

[8]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[9]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[10]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[11]

Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems & Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25

[12]

Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173

[13]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[14]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[15]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solution of the Novikov equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2865-2899. doi: 10.3934/dcdsb.2018290

[16]

Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193

[17]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[18]

Yanqin Fang, Jihui Zhang. Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$. Communications on Pure & Applied Analysis, 2013, 12 (2) : 663-678. doi: 10.3934/cpaa.2013.12.663

[19]

Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014

[20]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (43)
  • HTML views (60)
  • Cited by (0)

Other articles
by authors

[Back to Top]