\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonexistence results for elliptic differential inequalities with a potential in bounded domains

  • * Corresponding author:D. D. Monticelli

    * Corresponding author:D. D. Monticelli 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper we are concerned with a class of elliptic differential inequalities with a potential in bounded domains both of $\mathbb{R}^m$ and of Riemannian manifolds. In particular, we investigate the effect of the behavior of the potential at the boundary of the domain on nonexistence of nonnegative solutions.

    Mathematics Subject Classification: Primary:35R45, 35R01, 35J62, 35B09, 35D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   H. Berestycki , I. Capuzzo Dolcetta  and  L. Nirenberg , Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal., 4 (1994) , 59-78.  doi: 10.12775/TMNA.1994.023.
      I. Birindelli  and  E. Mitidieri , Liouville theorems for elliptic inequalities and applications, Proc. Royal Soc. Edinburgh, Sect. A, 128 (1998) , 1217-1247.  doi: 10.1017/S0308210500027293.
      L. D'Ambrosio  and  V. Mitidieri , A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math., 224 (2010) , 967-1020.  doi: 10.1016/j.aim.2009.12.017.
      L. D'Ambrosio  and  S. Lucente , Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Diff. Eq., 193 (2003) , 511-541.  doi: 10.1016/S0022-0396(03)00138-4.
      D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order Springer-Verlag, Berlin, 2001.
      A. Grigor'yan , Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Am. Math. Soc., 36 (1999) , 135-249.  doi: 10.1090/S0273-0979-99-00776-4.
      A. Grigor'yan and V. A. Kondratiev, On the existence of positive solutions of semilinear elliptic inequalities on Riemannian manifolds, in Around the research of Vladimir Maz'ya. Ⅱ, volume 12 of Int. Math. Ser. (N. Y. ), Springer, New York, (2010), 203-218. doi: 10.1007/978-1-4419-1343-2_8.
      A. Grigor'yan  and  Y. Sun , On non-negative solutions of the inequality $Δ u + u^σ ≤q 0$ on Riemannian manifolds, Comm. Pure Appl. Math., 67 (2014) , 1336-1352.  doi: 10.1002/cpa.21493.
      P. Mastrolia , D. D. Monticelli  and  F. Punzo , Nonexistence results for elliptic differential inequalities with a potential on Riemannian manifolds, Calc. Var. Part. Diff. Eq., 54 (2015) , 1345-1372.  doi: 10.1007/s00526-015-0827-0.
      P. Mastrolia , D. D. Monticelli  and  F. Punzo , Nonexistence of solutions to parabolic differential inequalities with a potential on Riemannian manifolds, Math. Ann., 367 (2017) , 929-963.  doi: 10.1007/s00208-016-1393-2.
      V. Mitidieri  and  S. I. Pohozev , Absence of global positive solutions of quasilinear elliptic inequalities, Dokl. Akad. Nauk, 359 (1998) , 456-460. 
      V. Mitidieri  and  S. I. Pohozaev , Nonexistence of positive solutions for quasilinear elliptic problems in $\mathbb R^N$, Tr. Mat. Inst. Steklova, 227 (1999) , 192-222. 
      V. Mitidieri  and  S. I. Pohozaev , A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova, 234 (2001) , 1-384. 
      V. Mitidieri  and  S. I. Pohozaev , Towards a unified approach to nonexistence of solutions for a class of differential inequalities, Milan J. Math., 72 (2004) , 129-162.  doi: 10.1007/s00032-004-0032-7.
      D. D. Monticelli , Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators, J. Eur. Math. Soc., 12 (2010) , 611-654.  doi: 10.4171/JEMS/210.
      S. I. Pohozaev  and  A. Tesei , Nonexistence of local solutions to semilinear partial differential inequalities, Ann. Inst. H. Poinc. Anal. Non Lin., 21 (2004) , 487-502.  doi: 10.1016/j.anihpc.2003.06.002.
      F. Punzo , Blow-up of solutions to semilinear parabolic equations on Riemannian manifolds with negative sectional curvature, J. Math. Anal. Appl., 387 (2012) , 815-827.  doi: 10.1016/j.jmaa.2011.09.043.
      F. Punzo  and  A. Tesei , On a semilinear parabolic equation with inverse-square potential, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 21 (2010) , 359-396.  doi: 10.4171/RLM/578.
      Y. Sun , Uniqueness results for nonnegative solutions of semilinear inequalities on Riemannian manifolds, J. Math. Anal. Appl., 419 (2014) , 646-661.  doi: 10.1016/j.jmaa.2014.05.011.
      Y. Sun , On nonexistence of positive solutions of quasilinear inequality on Riemannian manifolds, Proc. Amer. Math. Soc., 143 (2015) , 2969-2984.  doi: 10.1090/S0002-9939-2015-12705-0.
  • 加载中
SHARE

Article Metrics

HTML views(1492) PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return