The paper is devoted to the nonlinear Schrödinger equation with periodic linear and nonlinear potentials on periodic metric graphs. Assuming that the spectrum of linear part does not contain zero, we prove the existence of finite energy ground state solution which decays exponentially fast at infinity. The proof is variational and makes use of the generalized Nehari manifold for the energy functional combined with periodic approximations. Actually, a finite energy ground state solution is obtained from periodic solutions in the infinite wave length limit.
Citation: |
R. Adami
, C. Cacciapuoti
, D. Finco
and D. Noja
, Constrained energy minimization and orbital stability for the NLS equation on a star graph, Ann. Inst. H. Poincaré, Anal. Nonlin., 31 (2014)
, 1289-1310.
doi: 10.1016/j.anihpc.2013.09.003.![]() ![]() ![]() |
|
R. Adami
, C. Cacciapuoti
, D. Finco
and D. Noja
, Variational properties and orbital stability of standing waves for NLS equation on a star graph, J. Differ. Equat., 257 (2014)
, 3738-3777.
doi: 10.1016/j.jde.2014.07.008.![]() ![]() ![]() |
|
R. Adami
, E. Serra
and P. Tilli
, NLS ground states on graphs, Calc. Var., 54 (2015)
, 743-761.
doi: 10.1007/s00526-014-0804-z.![]() ![]() ![]() |
|
R. Adami
, E. Serra
and P. Tilli
, Threshold phenomena and existence results for NLS ground state on graphs, J. Funct. Anal., 271 (2016)
, 201-223.
doi: 10.1016/j.jfa.2016.04.004.![]() ![]() ![]() |
|
R. Adami
, E. Serra
and P. Tilli
, Negative energy ground states for the $L^2$-critical NLSE on metric graphs, Commun. Math. Phys., 352 (2017)
, 387-406.
doi: 10.1007/s00220-016-2797-2.![]() ![]() ![]() |
|
S. Akduman
and A. Pankov
, Schrödinger operators with locally integrable potentials on infinite metric graphs, Applicable Anal., 96 (2016)
, 2149-2161.
doi: 10.1080/00036811.2016.1207247.![]() ![]() ![]() |
|
S. Akduman
and A. Pankov
, Exponential decay of eigenfunctions of Schrödinger operators on infinite metric graphs, Compl. Variables Elliptic Equat., 62 (2017)
, 957-966.
doi: 10.1080/17476933.2016.1254204.![]() ![]() ![]() |
|
T. Bartsch
and Y. Ding
, On a nonlinear Schrödinger equation with periodic potential, Math. Ann., 313 (1999)
, 15-37.
doi: 10.1007/s002080050248.![]() ![]() ![]() |
|
G. Berkolaiko and P. Kuchment,
Introduction to Quantum Graphs Amer. Math. Soc., Providence, R. I., 2013.
![]() ![]() |
|
H. Brezis,
Functional Analysis, Sobolev Spaces and Partial Differential Equations Springer, New York, 2011.
![]() ![]() |
|
C. Cacciapuoti
, D. Finco
and D. Noja
, Ground state and orbital stability for the NLS equation on a general star-like graph with potentials, Nonlinearity, 30 (2017)
, 3271-3303.
![]() |
|
P. Drábek and J. Milota,
Methods of Nonlinear Analysis. Applications to Differential Equations 2nd edition, Birkhäuser, Basel, 2013.
doi: 10.1007/978-3-0348-0387-8.![]() ![]() ![]() |
|
S. Gilg, D. Pelinovsky and G. Schneider, Validity of the NLS approximation for periodic quantum graphs Nonlinear Differ. Equ. Appl. 23 (2016), Art. 63, 30 pp.
doi: 10.1007/s00030-016-0417-7.![]() ![]() ![]() |
|
E. Korotyaev
and L. Lobanov
, Schrödinger operators on zigzag nanotubes, Ann. Inst. H. Poincaré, 8 (2007)
, 1151-1176.
doi: 10.1007/s00023-007-0331-y.![]() ![]() ![]() |
|
P. Kuchment
, Graph models for waves in thin structures, Waves Random Media, 12 (2002)
, R1-R24.
doi: 10.1088/0959-7174/12/4/201.![]() ![]() ![]() |
|
P. Kuchment
, Quantum graphs, Ⅰ. Some basic structures, Waves Random Media, 14 (2004)
, S107-S128.
doi: 10.1088/0959-7174/14/1/014.![]() ![]() ![]() |
|
P. Kuchment
, Quantum graphs: Ⅱ. Some spectral properties of quantum and combinatorial graphs, J. Phys. A: Math. Gen., 38 (2005)
, 4887-4900.
doi: 10.1088/0305-4470/38/22/013.![]() ![]() ![]() |
|
P. Kuchment
and O. Post
, On the spectra of carbon nano-structures, Commun. Math. Phys., 275 (2007)
, 805-826.
doi: 10.1007/s00220-007-0316-1.![]() ![]() ![]() |
|
J. L. Marzuola
and D. Pelinovsky
, Ground state on the dumbbell graph, Appl. Math. Res. Express, 2016 (2016)
, 98-145.
doi: 10.1093/amrx/abv011.![]() ![]() ![]() |
|
D. Mugnolo,
Semigroup Methods for Evolution Equations on Networks Springer, Chem, 2014.
doi: 10.1007/978-3-319-04621-1.![]() ![]() ![]() |
|
H. Niikuni
, Decisiveness of the spectral gaps of periodic periodic Schrödinger operators on the dumbbell-like metric graph, Opusc. Math., 35 (2015)
, 199-234.
doi: 10.7494/OpMath.2015.35.2.199.![]() ![]() ![]() |
|
D. Noja, Nonlinear Schrödinger equation on graphs: Recent results and open problems Phil. Trans. Roy. Soc. 372 (2014), 20130002, 20pp.
doi: 10.1098/rsta.2013.0002.![]() ![]() ![]() |
|
D. Noja
, D. Pelinovsky
and G. Shaikhova
, Bifurcation and stability of standing waves on tadpole graphs, Nonlinearity, 28 (2015)
, 2343-2378.
doi: 10.1088/0951-7715/28/7/2343.![]() ![]() ![]() |
|
A. Pankov
, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005)
, 259-287.
doi: 10.1007/s00032-005-0047-8.![]() ![]() ![]() |
|
A. Pankov
, Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 19 (2006)
, 27-40.
doi: 10.1088/0951-7715/19/1/002.![]() ![]() ![]() |
|
A. Pankov
, Gap solitons in periodic discrete nonlinear Schrödinger equations Ⅱ: A generalized Nehari manifold approach, Discr. Cont. Dyn. Syst., 19 (2007)
, 419-430.
doi: 10.3934/dcds.2007.19.419.![]() ![]() ![]() |
|
A. Pankov
, On decay of solutions to nonlinear Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008)
, 2565-2570.
doi: 10.1090/S0002-9939-08-09484-7.![]() ![]() ![]() |
|
A. Pankov
, Gap solitons in almost periodic one-dimensional structures, Calc. Var., 54 (2015)
, 1963-1984.
doi: 10.1007/s00526-015-0851-0.![]() ![]() ![]() |
|
A. Pankov
and V. Rothos
, Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities, Discr. Cont. Dyn. Syst., 30 (2011)
, 835-849.
doi: 10.3934/dcds.2011.30.835.![]() ![]() ![]() |
|
D. Pelinovsky
and G. Schneider
, Bifurcation of standing localized waves on periodic graphs, Ann. H. Poincaré, 18 (2017)
, 1185-1211.
doi: 10.1007/s00023-016-0536-z.![]() ![]() ![]() |
|
M. Reed and B. Simon,
Methods of Modern Mathematical Physics, Ⅰ. Functional Analysis Academic Press, San Diego, 1980.
![]() ![]() |
|
M. Reed and B. Simon,
Methods of Modern Mathematical Physics, Ⅳ. Analysis of Operators Academic Press, San Diego, 1978.
![]() ![]() |
|
A. Szulkin
and T. Weth
, Ground state solutions for some indefinite variational problems, J. Funct. Anal, 257 (2009)
, 3802-3822.
doi: 10.1016/j.jfa.2009.09.013.![]() ![]() ![]() |
|
M. Willem,
Minimax Methods Birkhäuser, Boston, 1996.
![]() |
Periodic graph.