April  2018, 38(4): 1615-1655. doi: 10.3934/dcds.2018067

Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouville rotation behavior

1. 

University of Education Vorarlberg, Liechtensteinerstrasse 33 - 37, 6800 Feldkirch, Austria

2. 

University of Hamburg, Department of Mathematics, Bundesstrasse 55, 20146 Hamburg, Germany

Received  November 2015 Revised  October 2017 Published  January 2018

We show that on any smooth compact connected manifold of dimension $m≥2$ admitting a smooth non-trivial circle action $\mathcal{S} = \left\{S_t\right\}_{t ∈ \mathbb{R}}$, $S_{t+1}=S_t$, the set of weakly mixing $C^{∞}$-diffeomorphisms which preserve both a smooth volume $ν$ and a measurable Riemannian metric is dense in ${{\mathcal{A}}_{\alpha }}\left( M \right)={{\overline{\left\{ h\circ {{S}_{\alpha }}\circ {{h}^{-1}}:h\in \text{Dif}{{\text{f}}^{\infty }}\left( M,\nu \right) \right\}}}^{{{C}^{\infty }}}}$ for every Liouville number $α$. The proof is based on a quantitative version of the approximation by conjugation-method with explicitly constructed conjugation maps and partitions.

Citation: Roland Gunesch, Philipp Kunde. Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouville rotation behavior. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1615-1655. doi: 10.3934/dcds.2018067
References:
[1]

D. V. Anosov and A. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obsc., 23 (1970), 3-36.   Google Scholar

[2]

M. Benhenda, Non-standard smooth realization of translations on the torus, J. Mod. Dyn., 7 (2013), 329-367.  doi: 10.3934/jmd.2013.7.329.  Google Scholar

[3]

R. Berndt, Einführung in Die Symplektische Geometrie, Vieweg, Braunschweig [u.a.], 1998.  Google Scholar

[4]

G. M. Constantine and T. H. Savits, A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc., 348 (1996), 503-520.  doi: 10.1090/S0002-9947-96-01501-2.  Google Scholar

[5]

B. Fayad and A. Katok, Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems, 24 (2004), 1477-1520.  doi: 10.1017/S0143385703000798.  Google Scholar

[6]

B. Fayad and R. Krikorian, Herman's last geometric theorem, Ann. Scient. Ecole. Norm. Sup., 42 (2009), 193-219.  doi: 10.24033/asens.2093.  Google Scholar

[7]

B. Fayad and M. Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Ann. Scient. Ecole. Norm. Sup.(4), 38 (2005), 339-364.  doi: 10.1016/j.ansens.2005.03.004.  Google Scholar

[8]

B. FayadM. Saprykina and A. Windsor, Nonstandard smooth realizations of Liouville rotations, Ergodic Theory Dynam. Systems, 27 (2007), 1803-1818.   Google Scholar

[9]

R. Gunesch and A. Katok, Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure, Discrete Contin. Dynam. Systems, 6 (2000), 61-88.   Google Scholar

[10]

P. R. Halmos, Lectures on Ergodic Theory, Japan Math Soc., Tokyo, 1956.  Google Scholar

[11]

P. R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950.  Google Scholar

[12]

B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge [u.a.], 1995.  Google Scholar

[13]

B. Hasselblatt and A. Katok, Principal Structures In: B. Hasselblatt und A. Katok (Editors) Handbook of Dynamical Systems, Band 1A. Elsevier, Amsterdam [u.a.], 2002. Google Scholar

[14]

A. Kriegl and P. Michor, The Convenient Setting of Global Analysis, American Math. Soc., Providence, 1997.  Google Scholar

[15]

P. Kunde, Real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric, Ergodic Theory & Dynam. Systems 37, no. 37 (2017), 1547-1569.  doi: 10.1017/etds.2015.125.  Google Scholar

[16]

J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), 286-294.  doi: 10.1090/S0002-9947-1965-0182927-5.  Google Scholar

[17]

H. Omori, Infinite Dimensional Lie Transformation Groups, Springer, Berlin [u.a.], 1974.  Google Scholar

[18]

B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.  Google Scholar

[19]

M. D. Sklover, Classical dynamical systems on the torus with continuous spectrum, Izv. Vys. Ucebn. Zaved. Mat., 1967 (1967), 113-124.   Google Scholar

show all references

References:
[1]

D. V. Anosov and A. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obsc., 23 (1970), 3-36.   Google Scholar

[2]

M. Benhenda, Non-standard smooth realization of translations on the torus, J. Mod. Dyn., 7 (2013), 329-367.  doi: 10.3934/jmd.2013.7.329.  Google Scholar

[3]

R. Berndt, Einführung in Die Symplektische Geometrie, Vieweg, Braunschweig [u.a.], 1998.  Google Scholar

[4]

G. M. Constantine and T. H. Savits, A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc., 348 (1996), 503-520.  doi: 10.1090/S0002-9947-96-01501-2.  Google Scholar

[5]

B. Fayad and A. Katok, Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems, 24 (2004), 1477-1520.  doi: 10.1017/S0143385703000798.  Google Scholar

[6]

B. Fayad and R. Krikorian, Herman's last geometric theorem, Ann. Scient. Ecole. Norm. Sup., 42 (2009), 193-219.  doi: 10.24033/asens.2093.  Google Scholar

[7]

B. Fayad and M. Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Ann. Scient. Ecole. Norm. Sup.(4), 38 (2005), 339-364.  doi: 10.1016/j.ansens.2005.03.004.  Google Scholar

[8]

B. FayadM. Saprykina and A. Windsor, Nonstandard smooth realizations of Liouville rotations, Ergodic Theory Dynam. Systems, 27 (2007), 1803-1818.   Google Scholar

[9]

R. Gunesch and A. Katok, Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure, Discrete Contin. Dynam. Systems, 6 (2000), 61-88.   Google Scholar

[10]

P. R. Halmos, Lectures on Ergodic Theory, Japan Math Soc., Tokyo, 1956.  Google Scholar

[11]

P. R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950.  Google Scholar

[12]

B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge [u.a.], 1995.  Google Scholar

[13]

B. Hasselblatt and A. Katok, Principal Structures In: B. Hasselblatt und A. Katok (Editors) Handbook of Dynamical Systems, Band 1A. Elsevier, Amsterdam [u.a.], 2002. Google Scholar

[14]

A. Kriegl and P. Michor, The Convenient Setting of Global Analysis, American Math. Soc., Providence, 1997.  Google Scholar

[15]

P. Kunde, Real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric, Ergodic Theory & Dynam. Systems 37, no. 37 (2017), 1547-1569.  doi: 10.1017/etds.2015.125.  Google Scholar

[16]

J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), 286-294.  doi: 10.1090/S0002-9947-1965-0182927-5.  Google Scholar

[17]

H. Omori, Infinite Dimensional Lie Transformation Groups, Springer, Berlin [u.a.], 1974.  Google Scholar

[18]

B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.  Google Scholar

[19]

M. D. Sklover, Classical dynamical systems on the torus with continuous spectrum, Izv. Vys. Ucebn. Zaved. Mat., 1967 (1967), 113-124.   Google Scholar

Figure 1.  The action of the map $g_{\varepsilon}$.
Figure 2.  The action of the map $g_{a,b,\varepsilon}$.
Figure 3.  The map $\psi_\mu$ has the useful property of rotating several small cuboids individually while being the identity outside of a neighborhood of them.
Figure 4.  The map $\phi_n$ is constructed as concatenation of a stretch map $C_\lambda$, a rotation $\varphi$, the map $\psi_\mu$ mentioned before, and $C_\lambda^{-1}$ (the inverse of the stretch map). The map thus constructed has the very useful property of stretching a cuboid (illustrated here by the underlying grey rectangle) in one direction (similar to what a hyperbolic map would do), yet it is almost an isometry on all of the smaller cuboids (illustrated here by black squares with letters). In particular, a partition element $\hat{I} \in \eta_n$ (the leftmost grey rectangle) is mapped to a set that has size almost 1 in one of its coordinates.
[1]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[2]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[3]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[4]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[5]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[6]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[7]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[8]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[9]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[10]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[11]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[12]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021004

[13]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[16]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[17]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[18]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[19]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[20]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (283)
  • HTML views (522)
  • Cited by (2)

Other articles
by authors

[Back to Top]