We study the existence of positive solutions for the non-autonomous Schrödinger-Poisson system:
$\left\{ {\begin{array}{*{20}{l}} { - \Delta u + u + \lambda K\left( x \right)\phi u = a\left( x \right){{\left| u \right|}^{p - 2}}u}&{{\text{in }}{\mathbb{R}^3},} \\ { - \Delta \phi = K\left( x \right){u^2}}&{{\text{in }}{\mathbb{R}^3},} \end{array}} \right.$
where $\lambda >0$, $2 < p \le 4$ and both $K\left( x\right) $ and $a\left( x\right) $ are nonnegative functions in $\mathbb{R}^{3}$, which satisfy the given conditions, but not require any symmetry property. Assuming that $% \lim_{\left\vert x\right\vert \rightarrow \infty }K\left( x\right) = K_{\infty }\geq 0$ and $\lim_{\left\vert x\right\vert \rightarrow \infty }a\left( x\right) = a_{\infty }>0$, we explore the existence of positive solutions, depending on the parameters $\lambda$ and $p$. More importantly, we establish the existence of ground state solutions in the case of $3.18 \approx \frac{{1 + \sqrt {73} }}{3} < P \le 4$.
Citation: |
A. Ambrosetti , On the Schrödinger-Poisson systems, Milan J. Math., 76 (2008) , 257-274. doi: 10.1007/s00032-008-0094-z. | |
A. Ambrosetti and D. Ruiz , Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008) , 39-404. doi: 10.1142/S021919970800282X. | |
A. Azzollini and A. Pomponio , Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008) , 90-108. doi: 10.1016/j.jmaa.2008.03.057. | |
V. Benci and D. Fortunato , An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998) , 283-293. doi: 10.12775/TMNA.1998.019. | |
P. A. Binding , P. Drábek and Y. X. Huang , On Neumann boundary value problems for some quasilinear elliptic equations, Electron. J. Differential Equations, 5 (1997) , 1-11. | |
H. Brézis and E. H. Lieb , A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer Math. Soc., 88 (1983) , 486-490. | |
K. J. Brown and T. F. Wu , A fibrering map approach to a semilinear elliptic boundary value problem, Electron. J. Differential Equations, 69 (2007) , 1-9. | |
K. J. Brown and T. F. Wu , A fibering map approach to a potential operator equation and its applications, Differential Integral Equations, 22 (2009) , 1097-1114. | |
K. J. Brown and Y. Zhang , The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003) , 481-499. doi: 10.1016/S0022-0396(03)00121-9. | |
G. Cerami and G. Vaira , Positive solutions for some non autonomous Schrödinger-Poisson Systems, J. Differential Equations, 248 (2010) , 521-543. doi: 10.1016/j.jde.2009.06.017. | |
C. Y. Chen , Y. C. Kuo and T. F. Wu , Existence and multiplicity of positive solutions for the nonlinear Schrödinger-Poisson equations, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013) , 745-764. doi: 10.1017/S0308210511000692. | |
G. M. Coclite and V. Georgiev , Solitary waves for Maxwell-Schrödinger equations, Electron. J. Differential Equations, 94 (2004) , 1-31. | |
T. D'Aprile and D. Mugnai , Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004) , 307-322. | |
P. Drábek and S. I. Pohozaev , Positive solutions for the $p$ -Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997) , 703-726. doi: 10.1017/S0308210500023787. | |
I. Ekeland , On the variational principle, J. Math. Anal. Appl., 47 (1974) , 324-353. doi: 10.1016/0022-247X(74)90025-0. | |
I. Ianni and G. Vaira , On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008) , 573-595. | |
I. Ianni and G. Vaira , Non-radial sign-changing solutions for the Schrödinger-Poisson problem in the semiclassical limit, Nonlinear Differ. Equ. Appl., 22 (2015) , 741-776. doi: 10.1007/s00030-014-0303-0. | |
M. K. Kwong , Uniqueness of positive solution of $Δ u-u+u^{p}=0$ in $\mathbb{R}^{N}$, Arch. Ration. Mech. Anal., 105 (1989) , 243-266. | |
P. L. Lions , The concentration-compactness principle in the calculus of variations, The locally compact case Ⅰ, Ann. Inst. H. Poincar é Anal. Non Linéaire, 1 (1984) , 109-145. doi: 10.1016/S0294-1449(16)30428-0. | |
P. L. Lions , The concentration-compactness principle in the calculus of variations, The locally compact case Ⅱ, Ann. Inst. H. Poincar é Anal. Non Linéaire, 1 (1984) , 223-283. doi: 10.1016/S0294-1449(16)30422-X. | |
A. Mao , L. Yang , A. Qian and S. Luan , Existence and concentration of solutions of Schrödinger-Poisson system, Applied Mathematics Letters, 68 (2017) , 8-12. doi: 10.1016/j.aml.2016.12.014. | |
Z. Nehari , On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960) , 101-123. doi: 10.1090/S0002-9947-1960-0111898-8. | |
W. M. Ni and I. Takagi , On the shape of least energy solution to a Neumann problem, Comm. Pure Appl. Math., 44 (1991) , 819-851. doi: 10.1002/cpa.3160440705. | |
D. Ruiz , The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006) , 655-674. doi: 10.1016/j.jfa.2006.04.005. | |
D. Ruiz , On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration Mech. Anal., 198 (2010) , 349-368. doi: 10.1007/s00205-010-0299-5. | |
O. Sánchez and J. Soler , Long-time dynamics of the Schrödinger-Poisson-Slater system, J. Statist. Phys., 114 (2004) , 179-204. doi: 10.1023/B:JOSS.0000003109.97208.53. | |
J. Sun , H. Chen and J. J. Nieto , On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 252 (2012) , 3365-3380. doi: 10.1016/j.jde.2011.12.007. | |
J. Sun and T. F. Wu , On the nonlinear Schrödinger-Poisson systems with sign-changing potential, Z. Angew. Math. Phys., 66 (2015) , 1649-1669. doi: 10.1007/s00033-015-0494-1. | |
J. Sun , T. F. Wu and Z. Feng , Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system, J. Differential Equations, 260 (2016) , 586-627. doi: 10.1016/j.jde.2015.09.002. | |
G. Tarantello , On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992) , 281-304. doi: 10.1016/S0294-1449(16)30238-4. | |
G. Vaira , Ground states for Schrödinger-Poisson type systems, Ric. Mat., 60 (2011) , 263-297. doi: 10.1007/s11587-011-0109-x. | |
Z. Wang and H. Zhou , Positive solution for a nonlinear stationary Schrödinger-Poisson system in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst., 18 (2007) , 809-816. doi: 10.3934/dcds.2007.18.809. | |
L. Zhao , H. Liu and F. Zhao , Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential Equations, 255 (2013) , 1-23. doi: 10.1016/j.jde.2013.03.005. | |
L. Zhao and F. Zhao , On the existence of solutions for the Schr ödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008) , 155-169. doi: 10.1016/j.jmaa.2008.04.053. |