In the setting of mean-square exponential dichotomies, we study the existence and uniqueness of mean-square almost automorphic solutions of non-autonomous linear and nonlinear stochastic differential equations.
Citation: |
L. Arnold, Stochastic Differential Equations: Theory and Applications, New York, 1974. | |
S. Bochner , A new approach to almost periodicity, J. Differential Equations, 256 (2014) , 1350-1367. doi: 10.1073/pnas.48.12.2039. | |
J. Campos and M. Tarallo , Almost automorphic linear dynamics by Favard theory, J. Differential Equations, 256 (2014) , 1350-1367. doi: 10.1016/j.jde.2013.10.018. | |
T. Caraballo and D. Cheban , Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition Ⅰ, J. Differential Equations, 246 (2009) , 108-128. doi: 10.1016/j.jde.2008.04.001. | |
T. Caraballo and D. Cheban , Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition Ⅱ, J. Differential Equations, 246 (2009) , 1164-1186. doi: 10.1016/j.jde.2008.07.025. | |
K. Chang , Z. Zhao and G. M. N'Guérékata , Square-mean almost automorphic mild solutions to non-autonomous stochastic differential equations in Hilbert spaces, Comput. Math. Appl., 61 (2011) , 384-391. doi: 10.1016/j.camwa.2010.11.014. | |
Z. Chen and W. Lin , Square-mean pseudo almost automorphic process and its application to stochastic evolution equations, J. Funct. Anal., 261 (2011) , 69-89. doi: 10.1016/j.jfa.2011.03.005. | |
Z. Chen and W. Lin , Square-mean weighted pseudo almost automorphic solutions for non-autonomous stochastic evolution equations, J. Math. Pures Appl., 100 (2013) , 476-504. doi: 10.1016/j.matpur.2013.01.010. | |
W. A. Coppel, Dichotomy in Stability Theory, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, New York/Berlin, 1978. doi: 10.1007/BFb0067780. | |
T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, New York, 2013. doi: 10.1007/978-3-319-00849-3. | |
H. Ding , W. Long and G. M. N'Guérékata , Almost automorphic solutions of nonautonomous evolution equations, Nonlinear Anal., 70 (2009) , 4158-4164. doi: 10.1016/j.na.2008.09.005. | |
J. D. Dollard and C. N. Friedman, Product Integration with Applications to Differential Equations, Addison-Wesley Publishing Company, Reading, Massachusetts, 1979. doi: 10.1017/CBO9781107340701.005. | |
L. C. Evans, An Introduction to Stochastic Differential Equations, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/mbk/082. | |
M. Fu and Z. Liu , Square-mean almost automorphic solutions for some stochastic differential equations, Proc. Amer. Math. Soc., 138 (2010) , 3689-3701. doi: 10.1090/S0002-9939-10-10377-3. | |
R. D. Gill and S. Johansen , A survey of product integration with a view toward application in survival analysis, Ann. Stat., 18 (1990) , 1501-1555. doi: 10.1214/aos/1176347865. | |
D. J. Higham , Mean-square and asymptotic stability of the stochastic theta method, SIAM J. Numerical Anal., 38 (2000) , 753-769. doi: 10.1137/S003614299834736X. | |
R. A. Johnson , A linear, almost periodic equation with an almost automorphic solution, Proc. Amer. Math. Soc., 82 (1981) , 199-205. doi: 10.1090/S0002-9939-1981-0609651-0. | |
P. E. Kloeden and T. Lorenz , Mean-square random dynamical systems, J. Differential Equations, 253 (2012) , 1422-1438. doi: 10.1016/j.jde.2012.05.016. | |
A. G. Ladde and G. S. Ladde, An Introduction to Differential Equations: Stochastic Modeling, Methods, and Analysis, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8384. | |
Z. Liu and K. Sun , Almost automorphic solutions for stochastic differential equations driven by Lévy noise, J. Funct. Anal., 226 (2014) , 1115-1149. doi: 10.1016/j.jfa.2013.11.011. | |
C. Lizama and J. G. Mesquita , Almost automorphic solutions of non-autonomous difference equations, J. Math. Anal. Appl., 407 (2013) , 339-349. doi: 10.1016/j.jmaa.2013.05.032. | |
X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402. | |
P. R. Masani , Multiplicative Riemann integration in normed rings, Trans. Amer. Math. Soc., 61 (1947) , 147-192. doi: 10.1090/S0002-9947-1947-0018719-6. | |
J. Massera and J. Schäffer, Linear Differential Equations and Function Spaces, in: Pure and Applied Mathematics, vol. 21, Academic Press, 1966. | |
G. M. N'Guérékata, Topics in Almost Automorphy, Springer, New York, Boston, Dordrecht, London, Moscow, 2005. | |
O. Perron , Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32 (1930) , 703-728. doi: 10.1007/BF01194662. | |
L. Schlesinger , Neue Grundlagen für einen infinitesimalkalkul der Matrizen, Math. Zeit., 33 (1931) , 33-61. doi: 10.1007/BF01174342. | |
W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows Mem. Amer. Math. Soc. , 136 (1998), x+93 pp. doi: 10.1090/memo/0647. | |
A. Slavík, Product Integration, its History and Applications, Matfyzpress, Prague, 2007. | |
O. M. Stanzhyts'kyi , Investigation of exponential dichotomy of Itô stochastic systems by using quadratic forms, Ukr. Mat. Zh., 53 (2001) , 1545-1555. | |
D. Stoica , Uniform exponential dichotomy of stochastic cocycles, Stochastic Process. Appl., 120 (2010) , 1920-1928. doi: 10.1016/j.spa.2010.05.016. | |
W. A. Veech , On a theorem of Bochner, Ann. of Math., 86 (1967) , 117-137. doi: 10.2307/1970363. | |
V. Volterra , Sulle equazioni differenziali lineari, Rendiconti Accademia dei Lincei, 4 (1887) , 393-396. |