For a heat equation with memory driven by a Lévy-type noise we establish the existence of a unique solution. The main part of the article focuses on the Freidlin-Wentzell large deviation principle of the solutions of heat equation with memory driven by a Lévy-type noise. For this purpose, we exploit the recently introduced weak convergence approach.
Citation: |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, New York, NY: Academic Press, 2003. | |
G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory: Theory and Applications, New York: Springer, 2012. | |
J. Bao and C. Yuan , Large deviations for neutral functional SDEs with jumps, Stochastics, 87 (2015) , 48-70. doi: 10.1080/17442508.2014.914516. | |
V. Barbu , S. Bonaccorsi and L. Tubaro , Existence and asymptotic behavior for hereditary stochastic evolution equations, Appl. Math. Optim., 69 (2014) , 273-314. doi: 10.1007/s00245-013-9224-2. | |
S. Bonaccorsi , G. da Prato and L. Tubaro , Asymptotic behavior of a class of nonlinear stochastic heat equations with memory effects, SIAM J. Math. Anal., 44 (2012) , 1562-1587. doi: 10.1137/110841795. | |
A. Budhiraja , J. Chen and P. Dupuis , Large deviations for stochastic partial differential equations driven by a Poisson random measure, Stochastic Processes Appl., 123 (2013) , 523-560. doi: 10.1016/j.spa.2012.09.010. | |
A. Budhiraja , P. Dupuis and V. Maroulas , Variational representations for continuous time processes, Ann. Inst. Henri Poincaré, Probab. Stat., 47 (2011) , 725-747. doi: 10.1214/10-AIHP382. | |
T. Caraballo , I. D. Chueshov , P. Marín-Rubio and J. Real , Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory, Discrete Contin. Dyn. Syst., 18 (2007) , 253-270. doi: 10.3934/dcds.2007.18.253. | |
T. Caraballo , J. Real and I. D. Chueshov , Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst., Ser. B, 9 (2008) , 525-539. doi: 10.3934/dcdsb.2008.9.525. | |
B. D. Coleman and M. E. Gurtin , Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967) , 199-208. doi: 10.1007/BF01596912. | |
Z. Dong , J. Xiong , J. Zhai and T. Zhang , A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises, J. Funct. Anal., 272 (2017) , 227-254. doi: 10.1016/j.jfa.2016.10.012. | |
C. Giorgi and V. Pata , Asymptotic behavior of a nonlinear hyperbolic heat equation with memory, NoDEA, Nonlinear Differ. Equ. Appl., 8 (2001) , 157-171. doi: 10.1007/PL00001443. | |
C. Giorgi , V. Pata and A. Marzocchi , Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA, Nonlinear Differ. Equ. Appl., 5 (1998) , 333-354. doi: 10.1007/s000300050049. | |
B. Goldys , M. Röckner and X. Zhang , Martingale solutions and Markov selections for stochastic partial differential equations, Stochastic Processes Appl., 119 (2009) , 1725-1764. doi: 10.1016/j.spa.2008.08.009. | |
M. E. Gurtin and B. C. Pipkin , A general theory of heat conduction with finite wave speeds, Arch. Rat. Mech. Anal., 31 (1968) , 113-126. doi: 10.1007/BF00281373. | |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Amsterdam: North-Holland Publishing Company, 1981. | |
Y. Li , Y. Xie and X. Zhang , Large deviation principle for stochastic heat equation with memory, Discrete Contin. Dyn. Syst., 35 (2015) , 5221-5237. doi: 10.3934/dcds.2015.35.5221. | |
J. W. Nunziato , On heat conduction in materials with memory, Q. Appl. Math., 29 (1971) , 187-204. doi: 10.1090/qam/295683. | |
J. Xiong and J. Zhai, Large deviations for locally monotone stochastic partial differential equations driven by levy noise, 2017. Available from: https://www.e-publications.org/ims/submission/BEJ/user/submissionFile/27769?confirm=1f6bdfb2. | |
X. Yang, J. Zhai and T. Zhang, Large deviations for SPDEs of jump type, Stoch. Dyn. , 15 (2015), 1550026, 30 pp. | |
J. Zhai and T. Zhang , Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises, Bernoulli, 21 (2015) , 2351-2392. doi: 10.3150/14-BEJ647. |