We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Toda lattice with steplike initial data corresponding to a rarefaction wave.
Citation: |
K. Andreiev , I. Egorova , T. L. Lange and G. Teschl , Rarefaction waves of the Korteweg-de Vries equation via nonlinear steepest descent, J. Differential Equations, 261 (2016) , 5371-5410. doi: 10.1016/j.jde.2016.08.009. | |
A. Boutet de Monvel , I. Egorova and E. Khruslov , Soliton asymptotics of the Cauchy problem solution for the Toda lattice, Inverse Problems, 13 (1997) , 223-237. doi: 10.1088/0266-5611/13/2/003. | |
A. Boutet de Monvel and I. Egorova , The Toda lattice with step-like initial data. Soliton asymptotics, Inverse Problems, 16 (2000) , 955-977. doi: 10.1088/0266-5611/16/4/306. | |
K. M. Case and M. Kac , A discrete version of the inverse scattering problem, J. Math. Phys., 14 (1973) , 594-603. doi: 10.1063/1.1666364. | |
P. Deift , S. Kamvissis , T. Kriecherbauer and X. Zhou , The Toda rarefaction problem, Comm. Pure Appl. Math., 49 (1996) , 35-83. doi: 10.1002/(SICI)1097-0312(199601)49:1<35::AID-CPA2>3.0.CO;2-8. | |
P. Deift , S. Venakides and X. Zhou , The collisionless shock region for the long time behavior of solutions of the KdV equation, Comm. Pure and Appl. Math., 47 (1994) , 199-206. doi: 10.1002/cpa.3160470204. | |
I. Egorova , The scattering problem for step-like Jacobi operator, Mat. Fiz. Anal. Geom., 9 (2002) , 188-205. | |
I. Egorova , J. Michor and G. Teschl , Scattering theory for Jacobi operators with general steplike quasi-periodic background, Zh. Mat. Fiz. Anal. Geom., 4 (2008) , 33-62. | |
I. Egorova, J. Michor and G. Teschl, Inverse scattering transform for the Toda hierarchy with steplike finite-gap backgrounds, J. Math. Physics, 50 (2009), 103522, 9pp. doi: 10.1063/1.3239507. | |
I. Egorova , J. Michor and G. Teschl , Scattering theory with finite-gap backgrounds: Transformation operators and characteristic properties of scattering data, Math. Phys. Anal. Geom., 16 (2013) , 111-136. doi: 10.1007/s11040-012-9121-y. | |
I. Egorova, J. Michor and G. Teschl, Long-time Asymptotics for the Toda Shock Problem: Non-overlapping Spectra, arXiv: 1406.0720. | |
I. Egorova and A. Pryimak, The Toda Rarefaction Problem: Construction of the Parametrix (in preparation). | |
A. Its, Large N-asymptotics in random matrices, In: Random Matrices, Random Processes and Integrable Systems, CRM Series in Mathematical Physics, Springer, New York, (2011), 351-413. | |
H. Krüger and G. Teschl , Long-time asymptotics for the Toda lattice in the soliton region, Math. Z., 262 (2009) , 585-602. doi: 10.1007/s00209-008-0391-9. | |
H. Krüger and G. Teschl , Long-time asymptotics of the Toda lattice for decaying initial data revisited, Rev. Math. Phys., 21 (2009) , 61-109. doi: 10.1142/S0129055X0900358X. | |
J. A. Leach and D. J. Needham , The large-time development of the solution to an initial-value problem for the Korteweg-de Vries equation: Ⅰ. Initial data has a discontinuous expansive step, Nonlinearity, 21 (2008) , 2391-2408. doi: 10.1088/0951-7715/21/10/010. | |
J. A. Leach and D. J. Needham , The large-time development of the solution to an initial-value problem for the Korteweg-de Vries equation. Ⅱ. Initial data has a discontinuous compressive step, Mathematika, 60 (2014) , 391-414. doi: 10.1112/S0025579313000284. | |
J. Michor , Wave phenomena of the Toda lattice with steplike initial data, Phys. Lett. A, 380 (2016) , 1110-1116. doi: 10.1016/j.physleta.2016.01.033. | |
G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surv. and Mon., 72, Amer. Math. Soc., Rhode Island, 2000. | |
M. Toda, Theory of Nonlinear Lattices, 2nd enl. ed., Springer, Berlin, 1989. | |
S. Venakides , P. Deift and R. Oba , The Toda shock problem, Comm. Pure Appl. Math., 44 (1991) , 1171-1242. doi: 10.1002/cpa.3160440823. |
Toda rarefaction problem with non-overlapping background spectra
Signature table for
Contour deformation of Step 2