2018, 38(4): 2065-2078. doi: 10.3934/dcds.2018084

The return times property for the tail on logarithm-type spaces

Departament de Matemàtiques i Informàtica, Universitat de Barcelona, 08007 Barcelona, Spain

Received  April 2017 Revised  October 2017 Published  January 2018

Fund Project: The authors were supported by grants MTM2016-75196-P (MINECO/FEDER, UE) and 2014SGR289

Given a dynamical system
$(Ω,Σ,μ, τ)$
with
$μ$
a non-atomic probability measure and
$τ$
an invertible measure preserving ergodic transformation, we prove that the maximal operator, considered by I. Assani, Z. Buczolich and R. D. Mauldin in 2005,
${N^*}f\left( x \right) = \mathop {\sup }\limits_{\alpha > 0} \alpha \# \left\{ {k \ge 1:\frac{{\left| {f\left( {{\tau ^k}x} \right)} \right|}}{k} > \alpha } \right\}$
satisfies that
${N^*}:\left[ {L \log_3 L (μ)} \right] \longrightarrow L^{1, ∞}(μ)$
is bounded where the space
$\left[ {L \log_3 L (μ)} \right]$
is defined by the condition
$\Vert f\Vert_{\left[ {L \log_3 L (μ)} \right]} = ∈t_0^1 \frac{\sup\limits_{t≤q y}tf_μ^*(t)}{y} \log_3 \frac 1y dy < ∞,$
with
$\log_3 x = 1+\log_+\log_+\log_+ x$
and
$f^*_μ$
the decreasing rearrangement of
$f$
with respect to
$μ$
. This space is near
$L \log_3 L (μ)$
, which is the optimal Orlicz space on which such boundedness can hold. As a consequence, the space
$\left[ {L \log_3 L (μ)} \right]$
satisfies the Return Times Property for the Tail; that is, for every
$f∈\left[ {L \log_3 L (μ)} \right]$
, there exists a set
$X_0$
so that
$μ(X_0) = 1$
and, for all
$x_0∈ X_0$
, all dynamical systems
$(Y,\mathcal{C},ν, S)$
and all
$g∈ L^1(ν)$
, the sequence
$R_ng(y) = \frac1nf(τ^nx_0)g(S^ny) \overset{n\to∞}\longrightarrow 0,\;\;\;\;\;\; ν\text{-a.e. } y∈ Y.$
Citation: María Jesús Carro, Carlos Domingo-Salazar. The return times property for the tail on logarithm-type spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2065-2078. doi: 10.3934/dcds.2018084
References:
[1]

N. Yu Antonov, Convergence of Fourier series, East J. Approx., 2 (1996), 187-196.

[2]

J. Arias-de-Reyna, Pointwise convergence of Fourier series, J. London Math. Soc., 65 (2002), 139-153. doi: 10.1112/S0024610701002824.

[3]

I. Assani, Strong laws for weighted sums of independent identically distributed random variables, Duke Math. J., 88 (1997), 217-246.

[4]

I. Assani, Convergence of the p-Series for stationary sequences, New York J. Math., 3A (1997), 15-30.

[5]

I. AssaniZ. Buczolich and R. D. Mauldin, An L1 counting problem in ergodic theory, J. Anal. Math., 95 (2005), 221-241. doi: 10.1007/BF02791503.

[6]

C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988.

[7]

J. Bourgain, Return time sequences of dynamical systems, IHES, Preprint, 1988.

[8]

J. Bourgain, Temps de retour pour des systèmes dynamiques, D. R. Acad. Sci. Paris Sér. I Math, 306 (1988), 483-485.

[9]

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, With an appendix by the author, H. Furstenberg, Y. Katznelson, and D. S. Ornstein, Inst. Hautes Études Sci. Publ. Math., 69 (1989), 5-45.

[10]

M. J. Carro, New extrapolation estimates, J. Funct. Anal., 174 (2000), 155-166. doi: 10.1006/jfan.2000.3568.

[11]

M. J. Carro and C. Domingo-Salazar Endpoint estimates for Rubio de Francia operators, Trans. Amer. Math. Soc. , (2017), to appear.

[12]

M. J. CarroL. Grafakos and J. Soria, Weighted weak-type (1, 1) estimates via Rubio de Francia extrapolation, J. Funct. Anal., 269 (2015), 1203-1233. doi: 10.1016/j.jfa.2015.06.005.

[13]

M. J. Carro, M. Lorente and F. J. Martín-Reyes, A counting problem in ergodic theory and extrapolation for one-sided weights, Journal d'Analyse Mathématique, (2016), to appear.

[14]

M. J. Carro and P. Tradacete, Extrapolation on $L^{p,∞}(μ) $, J. Funct. Anal., 265 (2013), 1840-1869.

[15]

H. H. ChungR. Hunt and D. S. Kurtz, The Hardy-Littlewood maximal function on $ L(p,q)$ spaces with weights, Indiana Univ. Math. J., 31 (1982), 109-120. doi: 10.1512/iumj.1982.31.31012.

[16]

C. DemeterM. T. LaceyT. Tao and C. Thiele, Breaking the duality in the return times theorem, Duke Math. J., 143 (2008), 281-355. doi: 10.1215/00127094-2008-020.

[17]

C. Demeter and A. Quas, Weak-L1 estimates and ergodic theorems, New York J. Math., 10 (2004), 169-174.

[18]

L. Ephremidze, The rearrangement inequality for the ergodic maximal function, Georgian Math. J., 8 (2001), 727-732.

[19]

R. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math., 71 (1982), 277-284.

[20]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. doi: 10.1090/S0002-9947-1972-0293384-6.

[21]

K. Noonan, Birkhoff's theorem and the Return Times for the Tail, Master Thesis, University of North Carolina, 2002.

[22]

P. Ortega, Weights for the ergodic maximal operator and a.e. convergence of the ergodic averages for function in Lorentz spaces, Tohoku Math. J., 45 (1993), 437-446. doi: 10.2748/tmj/1178225894.

[23]

J. L. Rubio de Francia, Factorization theory and $ A_p$ weights, Amer. J. Math., 106 (1984), 533-547. doi: 10.2307/2374284.

[24]

D. J. Rudolph, A joinings proof of Bourgain's return time theorem, Ergodic Theory Dynam. Systems, 14 (1994), 197-203.

[25]

D. J. Rudolph, Fully generic sequences and a multiple-term return-times theorem, Invent. Math., 131 (1998), 199-228.

[26]

E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc., 140 (1969), 35-54. doi: 10.1090/S0002-9947-1969-0241685-X.

[27]

S. Yano, Notes on Fourier analysis XXIX: An extrapolation theorem, J. Math. Soc. Japan, 3 (1951), 296-305. doi: 10.2969/jmsj/00320296.

show all references

References:
[1]

N. Yu Antonov, Convergence of Fourier series, East J. Approx., 2 (1996), 187-196.

[2]

J. Arias-de-Reyna, Pointwise convergence of Fourier series, J. London Math. Soc., 65 (2002), 139-153. doi: 10.1112/S0024610701002824.

[3]

I. Assani, Strong laws for weighted sums of independent identically distributed random variables, Duke Math. J., 88 (1997), 217-246.

[4]

I. Assani, Convergence of the p-Series for stationary sequences, New York J. Math., 3A (1997), 15-30.

[5]

I. AssaniZ. Buczolich and R. D. Mauldin, An L1 counting problem in ergodic theory, J. Anal. Math., 95 (2005), 221-241. doi: 10.1007/BF02791503.

[6]

C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988.

[7]

J. Bourgain, Return time sequences of dynamical systems, IHES, Preprint, 1988.

[8]

J. Bourgain, Temps de retour pour des systèmes dynamiques, D. R. Acad. Sci. Paris Sér. I Math, 306 (1988), 483-485.

[9]

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, With an appendix by the author, H. Furstenberg, Y. Katznelson, and D. S. Ornstein, Inst. Hautes Études Sci. Publ. Math., 69 (1989), 5-45.

[10]

M. J. Carro, New extrapolation estimates, J. Funct. Anal., 174 (2000), 155-166. doi: 10.1006/jfan.2000.3568.

[11]

M. J. Carro and C. Domingo-Salazar Endpoint estimates for Rubio de Francia operators, Trans. Amer. Math. Soc. , (2017), to appear.

[12]

M. J. CarroL. Grafakos and J. Soria, Weighted weak-type (1, 1) estimates via Rubio de Francia extrapolation, J. Funct. Anal., 269 (2015), 1203-1233. doi: 10.1016/j.jfa.2015.06.005.

[13]

M. J. Carro, M. Lorente and F. J. Martín-Reyes, A counting problem in ergodic theory and extrapolation for one-sided weights, Journal d'Analyse Mathématique, (2016), to appear.

[14]

M. J. Carro and P. Tradacete, Extrapolation on $L^{p,∞}(μ) $, J. Funct. Anal., 265 (2013), 1840-1869.

[15]

H. H. ChungR. Hunt and D. S. Kurtz, The Hardy-Littlewood maximal function on $ L(p,q)$ spaces with weights, Indiana Univ. Math. J., 31 (1982), 109-120. doi: 10.1512/iumj.1982.31.31012.

[16]

C. DemeterM. T. LaceyT. Tao and C. Thiele, Breaking the duality in the return times theorem, Duke Math. J., 143 (2008), 281-355. doi: 10.1215/00127094-2008-020.

[17]

C. Demeter and A. Quas, Weak-L1 estimates and ergodic theorems, New York J. Math., 10 (2004), 169-174.

[18]

L. Ephremidze, The rearrangement inequality for the ergodic maximal function, Georgian Math. J., 8 (2001), 727-732.

[19]

R. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math., 71 (1982), 277-284.

[20]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. doi: 10.1090/S0002-9947-1972-0293384-6.

[21]

K. Noonan, Birkhoff's theorem and the Return Times for the Tail, Master Thesis, University of North Carolina, 2002.

[22]

P. Ortega, Weights for the ergodic maximal operator and a.e. convergence of the ergodic averages for function in Lorentz spaces, Tohoku Math. J., 45 (1993), 437-446. doi: 10.2748/tmj/1178225894.

[23]

J. L. Rubio de Francia, Factorization theory and $ A_p$ weights, Amer. J. Math., 106 (1984), 533-547. doi: 10.2307/2374284.

[24]

D. J. Rudolph, A joinings proof of Bourgain's return time theorem, Ergodic Theory Dynam. Systems, 14 (1994), 197-203.

[25]

D. J. Rudolph, Fully generic sequences and a multiple-term return-times theorem, Invent. Math., 131 (1998), 199-228.

[26]

E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc., 140 (1969), 35-54. doi: 10.1090/S0002-9947-1969-0241685-X.

[27]

S. Yano, Notes on Fourier analysis XXIX: An extrapolation theorem, J. Math. Soc. Japan, 3 (1951), 296-305. doi: 10.2969/jmsj/00320296.

[1]

Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics & Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011

[2]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 367-385. doi: 10.3934/dcds.2004.10.367

[3]

Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure & Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101

[4]

Alicia Cordero, José Martínez Alfaro, Pura Vindel. Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 587-604. doi: 10.3934/dcds.2008.22.587

[5]

Sergei Ivanov. On Helly's theorem in geodesic spaces. Electronic Research Announcements, 2014, 21: 109-112. doi: 10.3934/era.2014.21.109

[6]

Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313

[7]

Jing Shi, Tiaojun Xiao. Store assistance and coordination of supply chains facing consumer's return. Journal of Industrial & Management Optimization, 2016, 12 (3) : 991-1007. doi: 10.3934/jimo.2016.12.991

[8]

Silvia Allavena, Michele Piana, Federico Benvenuto, Anna Maria Massone. An interpolation/extrapolation approach to X-ray imaging of solar flares. Inverse Problems & Imaging, 2012, 6 (2) : 147-162. doi: 10.3934/ipi.2012.6.147

[9]

Van Hieu Dang. An extension of hybrid method without extrapolation step to equilibrium problems. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1723-1741. doi: 10.3934/jimo.2017015

[10]

V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1/2) : 413-425. doi: 10.3934/dcds.2008.22.413

[11]

Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555

[12]

Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43

[13]

Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 945-961. doi: 10.3934/dcdsb.2011.16.945

[14]

Fatiha Alabau-Boussouira, Piermarco Cannarsa. A constructive proof of Gibson's stability theorem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 611-617. doi: 10.3934/dcdss.2013.6.611

[15]

Koray Karabina, Edward Knapp, Alfred Menezes. Generalizations of Verheul's theorem to asymmetric pairings. Advances in Mathematics of Communications, 2013, 7 (1) : 103-111. doi: 10.3934/amc.2013.7.103

[16]

Shalosh B. Ekhad and Doron Zeilberger. Proof of Conway's lost cosmological theorem. Electronic Research Announcements, 1997, 3: 78-82.

[17]

Florian Wagener. A parametrised version of Moser's modifying terms theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 719-768. doi: 10.3934/dcdss.2010.3.719

[18]

Mateusz Krukowski. Arzelà-Ascoli's theorem in uniform spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 283-294. doi: 10.3934/dcdsb.2018020

[19]

J. N. Lyness. Extrapolation expansions for Hanging-Chad-Type Galerkin integrals with plane triangular elements. Communications on Pure & Applied Analysis, 2006, 5 (2) : 337-347. doi: 10.3934/cpaa.2006.5.337

[20]

Lars Olsen. First return times: multifractal spectra and divergence points. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (15)
  • HTML views (74)
  • Cited by (0)

Other articles
by authors

[Back to Top]