April 2018, 38(4): 2079-2092. doi: 10.3934/dcds.2018085

Minimization of the lowest eigenvalue for a vibrating beam

1. 

LMIB and School of Mathematics and Systems Science, Beihang University, Beijing, China

2. 

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China

3. 

LMIB and School of Mathematics and Systems Science, Beihang University, Beijing, China

* Corresponding author: Zhikun She; Email: zhikun.she@buaa.edu.cn

Received  May 2017 Published  January 2018

Fund Project: The third author is supported by the National Natural Science Foundation of China (Grant No. 11671378) and the Fund of UCAS. The fourth author is supported by the National Natural Science Foundation of China (Grants No. 11371047 and No. 11422111)

In this paper we solve the minimization problem of the lowest eigenvalue for a vibrating beam. Firstly, based on the variational method, we establish the basic theory of the lowest eigenvalue for the fourth order measure differential equation (MDE). Secondly, we build the relationship between the minimization problem of the lowest eigenvalue for the ODE and the one for the MDE. Finally, with the help of this built relationship, we find the explicit optimal bound of the lowest eigenvalue for a vibrating beam.

Citation: Quanyi Liang, Kairong Liu, Gang Meng, Zhikun She. Minimization of the lowest eigenvalue for a vibrating beam. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2079-2092. doi: 10.3934/dcds.2018085
References:
[1]

M. Carter and B. van Brunt, The Lebesgue-Stieltjes Integral: A Practical Introduction Springer-Verlag, New York, 2000.

[2]

R. Courant and D. Hilbert, Methods of Mathematical Physics Wiley, New York, 1953.

[3]

Z. Halas and M. Tvrdý, Continuous dependence of solutions of generalized linear differential equations on a parameter, Funct. Differ. Equ., 16 (2009), 299-313.

[4]

X. JiangK. LiuG. Meng and Z. She, Continuity of the eigenvalues for a vibrating beam, Appl. Math. Lett., 67 (2017), 60-66. doi: 10.1016/j.aml.2016.12.006.

[5]

R. E. Megginson, An Introduction to Banach Space Theory Graduate Texts in Mathematics, 183 Springer-Verlag, New York, 1998.

[6]

G. Meng, Extremal problems for eigenvalues of measure differential equations, Proc. Amer. Math. Soc., 143 (2015), 1991-2002. doi: 10.1090/S0002-9939-2015-12304-0.

[7]

G. MengP. Yan and M. Zhang, Minimization of eigenvalues of one-dimensional p-Laplacian with integrable potentials, J. Optim. Theory Appl., 156 (2013), 294-319. doi: 10.1007/s10957-012-0125-3.

[8]

G. Meng and M. Zhang, Dependence of solutions and eigenvalues of measure differential equations on measures, J. Differential Eqautions, 254 (2013), 2196-2232. doi: 10.1016/j.jde.2012.12.001.

[9]

A. B. Mingarelli, Volterra-Stieltjes Integral Equations and Generalized Ordinary Differential Expressions Lecture Notes Math., Vol. 989 Springer-Verlag, New York, 1983.

[10]

P. Savoye, Equimeasurable rearrangements of functions and fourth order boundary value problems, Rocky Mountain J. Math., 26 (1996), 281-293. doi: 10.1216/rmjm/1181072116.

[11]

Š. Schwabik, Generalized Ordinary Differential Equations World Scientific, Singapore, 1992.

[12]

M. Tvrdý, Linear distributional differential equations of the second order, Math. Bohem., 119 (1994), 415-436.

[13]

M. Tvrdý, Differential and integral equations in the space of regulated functions, Mem. Differential Equations Math. Phys., 25 (2002), 1-104.

[14]

Q. WeiG. Meng and M. Zhang, Extremal values of eigenvalues of Sturm-Liouville operators with potentials in L1 balls, J. Differential Equations, 247 (2009), 364-400. doi: 10.1016/j.jde.2009.04.008.

[15]

P. Yan and M. Zhang, Continuity in weak topology and extremal problems of eigenvalues of the p-Laplacian, Trans. Amer. Math. Soc., 363 (2011), 2003-2028. doi: 10.1090/S0002-9947-2010-05051-2.

[16]

M. Zhang, Extremal values of smallest eigenvalues of Hill's operators with potentials in L1 balls, J. Differential Equations, 246 (2009), 4188-4220. doi: 10.1016/j.jde.2009.03.016.

[17]

M. Zhang, Minimization of the zeroth Neumann eigenvalues with integrable potentials, Ann. Inst. H.Poincaré Anal. Non Linéaire, 29 (2012), 501-523. doi: 10.1016/j.anihpc.2012.01.007.

show all references

References:
[1]

M. Carter and B. van Brunt, The Lebesgue-Stieltjes Integral: A Practical Introduction Springer-Verlag, New York, 2000.

[2]

R. Courant and D. Hilbert, Methods of Mathematical Physics Wiley, New York, 1953.

[3]

Z. Halas and M. Tvrdý, Continuous dependence of solutions of generalized linear differential equations on a parameter, Funct. Differ. Equ., 16 (2009), 299-313.

[4]

X. JiangK. LiuG. Meng and Z. She, Continuity of the eigenvalues for a vibrating beam, Appl. Math. Lett., 67 (2017), 60-66. doi: 10.1016/j.aml.2016.12.006.

[5]

R. E. Megginson, An Introduction to Banach Space Theory Graduate Texts in Mathematics, 183 Springer-Verlag, New York, 1998.

[6]

G. Meng, Extremal problems for eigenvalues of measure differential equations, Proc. Amer. Math. Soc., 143 (2015), 1991-2002. doi: 10.1090/S0002-9939-2015-12304-0.

[7]

G. MengP. Yan and M. Zhang, Minimization of eigenvalues of one-dimensional p-Laplacian with integrable potentials, J. Optim. Theory Appl., 156 (2013), 294-319. doi: 10.1007/s10957-012-0125-3.

[8]

G. Meng and M. Zhang, Dependence of solutions and eigenvalues of measure differential equations on measures, J. Differential Eqautions, 254 (2013), 2196-2232. doi: 10.1016/j.jde.2012.12.001.

[9]

A. B. Mingarelli, Volterra-Stieltjes Integral Equations and Generalized Ordinary Differential Expressions Lecture Notes Math., Vol. 989 Springer-Verlag, New York, 1983.

[10]

P. Savoye, Equimeasurable rearrangements of functions and fourth order boundary value problems, Rocky Mountain J. Math., 26 (1996), 281-293. doi: 10.1216/rmjm/1181072116.

[11]

Š. Schwabik, Generalized Ordinary Differential Equations World Scientific, Singapore, 1992.

[12]

M. Tvrdý, Linear distributional differential equations of the second order, Math. Bohem., 119 (1994), 415-436.

[13]

M. Tvrdý, Differential and integral equations in the space of regulated functions, Mem. Differential Equations Math. Phys., 25 (2002), 1-104.

[14]

Q. WeiG. Meng and M. Zhang, Extremal values of eigenvalues of Sturm-Liouville operators with potentials in L1 balls, J. Differential Equations, 247 (2009), 364-400. doi: 10.1016/j.jde.2009.04.008.

[15]

P. Yan and M. Zhang, Continuity in weak topology and extremal problems of eigenvalues of the p-Laplacian, Trans. Amer. Math. Soc., 363 (2011), 2003-2028. doi: 10.1090/S0002-9947-2010-05051-2.

[16]

M. Zhang, Extremal values of smallest eigenvalues of Hill's operators with potentials in L1 balls, J. Differential Equations, 246 (2009), 4188-4220. doi: 10.1016/j.jde.2009.03.016.

[17]

M. Zhang, Minimization of the zeroth Neumann eigenvalues with integrable potentials, Ann. Inst. H.Poincaré Anal. Non Linéaire, 29 (2012), 501-523. doi: 10.1016/j.anihpc.2012.01.007.

Figure 1.  Function $\mathbf{L}(r)$ of $r$
[1]

Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089

[2]

Gang Meng. The optimal upper bound for the first eigenvalue of the fourth order equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6369-6382. doi: 10.3934/dcds.2017276

[3]

Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033

[4]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[5]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[6]

Zongming Guo, Long Wei. A fourth order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2493-2508. doi: 10.3934/cpaa.2014.13.2493

[7]

Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617

[8]

Zongming Guo, Long Wei. A perturbed fourth order elliptic equation with negative exponent. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2018132

[9]

Tokushi Sato, Tatsuya Watanabe. Singular positive solutions for a fourth order elliptic problem in $R$. Communications on Pure & Applied Analysis, 2011, 10 (1) : 245-268. doi: 10.3934/cpaa.2011.10.245

[10]

Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227

[11]

John R. Graef, Lingju Kong, Min Wang. Existence of multiple solutions to a discrete fourth order periodic boundary value problem. Conference Publications, 2013, 2013 (special) : 291-299. doi: 10.3934/proc.2013.2013.291

[12]

Feliz Minhós, T. Gyulov, A. I. Santos. Existence and location result for a fourth order boundary value problem. Conference Publications, 2005, 2005 (Special) : 662-671. doi: 10.3934/proc.2005.2005.662

[13]

John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269

[14]

To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694

[15]

José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1

[16]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[17]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[18]

M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure & Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557

[19]

Zhilin Yang, Jingxian Sun. Positive solutions of a fourth-order boundary value problem involving derivatives of all orders. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1615-1628. doi: 10.3934/cpaa.2012.11.1615

[20]

Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

2016 Impact Factor: 1.099

Article outline

Figures and Tables

[Back to Top]