December  2018, 38(12): 6287-6304. doi: 10.3934/dcds.2018154

On a class of non-local elliptic equations with asymptotically linear term

1. 

School of Mathematics, Jilin University, Changchun 130012, China

2. 

School of Mathematical Sciences, Beijing Normal University, No. 19 XinJieKouWai St., HaiDian District, Beijing 100875, China

* Corresponding author: Xifeng Su

Dedicated to Rafael de la Llave on the occasion of his 60th birthday

Received  September 2017 Revised  November 2017 Published  April 2018

Fund Project: Y. Wei is supported by National Natural Science Foundation of China (Grant No. 11301209) and Outstanding Youth Foundation of Jilin Province of China (Grant No. 20170520056JH), X. Su is supported by National Natural Science Foundation of China (Grant No. 11301513) and "the Fundamental Research Funds for the Central Universities".

We consider the nonlinear elliptic PDE driven by the fractional Laplacian with asymptotically linear term. Some results regarding existence and multiplicity of non-trivial solutions are obtained. More precisely, information about multiple non-trivial solutions is given under some hypotheses of asymptotically linear condition; non-local elliptic equations with combined nonlinearities are also studied, and some results of local existence and global existence are obtained. Finally, an $L^{∞}$ regularity result is also given in the appendix, using the De Giorgi-Stampacchia iteration method.

Citation: Yuanhong Wei, Xifeng Su. On a class of non-local elliptic equations with asymptotically linear term. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6287-6304. doi: 10.3934/dcds.2018154
References:
[1]

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543. doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162. doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[3]

C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71. doi: 10.1017/S0308210511000175.  Google Scholar

[4]

X. Cabré and J. -M. Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire, C. R. Math. Acad. Sci. Paris, 347 (2009), 1361-1366. doi: 10.1016/j.crma.2009.10.012.  Google Scholar

[5]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[6]

L. Caffarelli, J. -M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111-1144. doi: 10.1002/cpa.20331.  Google Scholar

[7]

L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations, 41 (2011), 203-240. doi: 10.1007/s00526-010-0359-6.  Google Scholar

[8]

L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461. doi: 10.1007/s00222-007-0086-6.  Google Scholar

[9]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations, 36 (2011), 1353-1384. doi: 10.1080/03605302.2011.562954.  Google Scholar

[10]

D. G. de Figueiredo, J. -P. Gossez and P. Ubilla, Local "superlinearity" and "sublinearity" for the p-Laplacian, J. Funct. Anal., 257 (2009), 721-752. doi: 10.1016/j.jfa.2009.04.001.  Google Scholar

[11]

R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309-1344. doi: 10.1016/j.anihpc.2008.11.002.  Google Scholar

[12]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[13]

S. Dipierro, A. Figalli and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals, Comm. Partial Differential Equations, 39 (2014), 2351-2387. doi: 10.1080/03605302.2014.914536.  Google Scholar

[14]

S. Dipierro, G. Palatucci and E. Valdinoci, Dislocation dynamics in crystals: A macroscopic theory in a fractional Laplace setting, Comm. Math. Phys., 333 (2015), 1061-1105. doi: 10.1007/s00220-014-2118-6.  Google Scholar

[15]

L. Dupaigne and Y. Sire, A Liouville theorem for non local elliptic equations, in Symmetry for elliptic PDEs, 528 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2010,105-114. doi: 10.1090/conm/528/10417.  Google Scholar

[16]

A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems driven by fractional Laplacian operators, Math. Methods Appl. Sci., 38 (2015), 3551-3563. doi: 10.1002/mma.3438.  Google Scholar

[17]

M. d. M. González and R. Monneau, Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one, Discrete Contin. Dyn. Syst., 32 (2012), 1255-1286.   Google Scholar

[18]

Q.-Y. Guan and Z.-M. Ma, Boundary problems for fractional Laplacians, Stoch. Dyn., 5 (2005), 385-424. doi: 10.1142/S021949370500150X.  Google Scholar

[19]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305. doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[20]

C. Mouhot, E. Russ and Y. Sire, Fractional Poincaré inequalities for general measures, J. Math. Pures Appl. (9), 95 (2011), 72-84. doi: 10.1016/j.matpur.2010.10.003.  Google Scholar

[21]

S. Patrizi and E. Valdinoci, Crystal dislocations with different orientations and collisions, Arch. Ration. Mech. Anal., 217 (2015), 231-261. doi: 10.1007/s00205-014-0832-z.  Google Scholar

[22]

S. Patrizi and E. Valdinoci, Long-time behavior for crystal dislocation dynamics, Math. Models Methods Appl. Sci., 27 (2017), 2185-2228. doi: 10.1142/S0218202517500427.  Google Scholar

[23]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[24]

R. Servadei and E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445-2464. doi: 10.3934/cpaa.2013.12.2445.  Google Scholar

[25]

R. Servadei and E. Valdinoci, Lewy-stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091-1126.  doi: 10.4171/RMI/750.  Google Scholar

[26]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.   Google Scholar

[27]

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154, http://projecteuclid.org/euclid.pm/1387570393. doi: 10.5565/PUBLMAT_58114_06.  Google Scholar

[28]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.  Google Scholar

[29]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864. doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[30]

M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990, https://doi.org/10.1007/978-3-662-02624-3, Applications to nonlinear partial differential equations and Hamiltonian systems. doi: 10.1007/978-3-662-03212-1.  Google Scholar

[31]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 42 (2011), 21-41. doi: 10.1007/s00526-010-0378-3.  Google Scholar

[32]

J. Tan, Y. Wang and J. Yang, Nonlinear fractional field equations, Nonlinear Anal., 75 (2012), 2098-2110. doi: 10.1016/j.na.2011.10.010.  Google Scholar

[33]

Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calc. Var. Partial Differential Equations, 52 (2015), 95-124. doi: 10.1007/s00526-013-0706-5.  Google Scholar

[34]

M. Willem, Minimax Theorems, 24, Springer, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

show all references

References:
[1]

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543. doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162. doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[3]

C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71. doi: 10.1017/S0308210511000175.  Google Scholar

[4]

X. Cabré and J. -M. Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire, C. R. Math. Acad. Sci. Paris, 347 (2009), 1361-1366. doi: 10.1016/j.crma.2009.10.012.  Google Scholar

[5]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[6]

L. Caffarelli, J. -M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111-1144. doi: 10.1002/cpa.20331.  Google Scholar

[7]

L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations, 41 (2011), 203-240. doi: 10.1007/s00526-010-0359-6.  Google Scholar

[8]

L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461. doi: 10.1007/s00222-007-0086-6.  Google Scholar

[9]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations, 36 (2011), 1353-1384. doi: 10.1080/03605302.2011.562954.  Google Scholar

[10]

D. G. de Figueiredo, J. -P. Gossez and P. Ubilla, Local "superlinearity" and "sublinearity" for the p-Laplacian, J. Funct. Anal., 257 (2009), 721-752. doi: 10.1016/j.jfa.2009.04.001.  Google Scholar

[11]

R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309-1344. doi: 10.1016/j.anihpc.2008.11.002.  Google Scholar

[12]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[13]

S. Dipierro, A. Figalli and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals, Comm. Partial Differential Equations, 39 (2014), 2351-2387. doi: 10.1080/03605302.2014.914536.  Google Scholar

[14]

S. Dipierro, G. Palatucci and E. Valdinoci, Dislocation dynamics in crystals: A macroscopic theory in a fractional Laplace setting, Comm. Math. Phys., 333 (2015), 1061-1105. doi: 10.1007/s00220-014-2118-6.  Google Scholar

[15]

L. Dupaigne and Y. Sire, A Liouville theorem for non local elliptic equations, in Symmetry for elliptic PDEs, 528 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2010,105-114. doi: 10.1090/conm/528/10417.  Google Scholar

[16]

A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems driven by fractional Laplacian operators, Math. Methods Appl. Sci., 38 (2015), 3551-3563. doi: 10.1002/mma.3438.  Google Scholar

[17]

M. d. M. González and R. Monneau, Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one, Discrete Contin. Dyn. Syst., 32 (2012), 1255-1286.   Google Scholar

[18]

Q.-Y. Guan and Z.-M. Ma, Boundary problems for fractional Laplacians, Stoch. Dyn., 5 (2005), 385-424. doi: 10.1142/S021949370500150X.  Google Scholar

[19]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305. doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[20]

C. Mouhot, E. Russ and Y. Sire, Fractional Poincaré inequalities for general measures, J. Math. Pures Appl. (9), 95 (2011), 72-84. doi: 10.1016/j.matpur.2010.10.003.  Google Scholar

[21]

S. Patrizi and E. Valdinoci, Crystal dislocations with different orientations and collisions, Arch. Ration. Mech. Anal., 217 (2015), 231-261. doi: 10.1007/s00205-014-0832-z.  Google Scholar

[22]

S. Patrizi and E. Valdinoci, Long-time behavior for crystal dislocation dynamics, Math. Models Methods Appl. Sci., 27 (2017), 2185-2228. doi: 10.1142/S0218202517500427.  Google Scholar

[23]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[24]

R. Servadei and E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445-2464. doi: 10.3934/cpaa.2013.12.2445.  Google Scholar

[25]

R. Servadei and E. Valdinoci, Lewy-stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091-1126.  doi: 10.4171/RMI/750.  Google Scholar

[26]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.   Google Scholar

[27]

R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154, http://projecteuclid.org/euclid.pm/1387570393. doi: 10.5565/PUBLMAT_58114_06.  Google Scholar

[28]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.  Google Scholar

[29]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864. doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[30]

M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990, https://doi.org/10.1007/978-3-662-02624-3, Applications to nonlinear partial differential equations and Hamiltonian systems. doi: 10.1007/978-3-662-03212-1.  Google Scholar

[31]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 42 (2011), 21-41. doi: 10.1007/s00526-010-0378-3.  Google Scholar

[32]

J. Tan, Y. Wang and J. Yang, Nonlinear fractional field equations, Nonlinear Anal., 75 (2012), 2098-2110. doi: 10.1016/j.na.2011.10.010.  Google Scholar

[33]

Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calc. Var. Partial Differential Equations, 52 (2015), 95-124. doi: 10.1007/s00526-013-0706-5.  Google Scholar

[34]

M. Willem, Minimax Theorems, 24, Springer, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[4]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[5]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[9]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[10]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[11]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[12]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[13]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[14]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[15]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[16]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[17]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[18]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[19]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[20]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (287)
  • HTML views (584)
  • Cited by (1)

Other articles
by authors

[Back to Top]